
If $\overrightarrow{a}=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{2j}}\,+\overset{\wedge }{\mathop{3k}}\,$ and $\overset{\to }{\mathop{b}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( a\times \overset{\wedge }{\mathop{i}}\, \right)+\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right)+\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)$ then length of b is equal to:
A. $\sqrt{12}$
B.$2\sqrt{12}$
C.$3\sqrt{14}$
D.$2\sqrt{14}$
Answer
517.5k+ views
Hint: Use vector triple product concept.
Here, we have vectors given
$\overrightarrow{a}=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{2j}}\,+\overset{\wedge }{\mathop{3k}}\,............\left( 1 \right)$
And
$\overset{\to }{\mathop{b}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( a\times \overset{\wedge }{\mathop{i}}\, \right)+\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right)+\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)...........\left( 2 \right)$
We need to find the length of the vector $\overset{\to }{\mathop{b}}\,$. Vector $\overset{\to }{\mathop{b}}\,$is not in the generalized form $x\overset{\wedge }{\mathop{i}}\,+y\overset{\wedge }{\mathop{i}}\,=\overset{\wedge }{\mathop{k}}\,,$ so first we need to convert $\overset{\to }{\mathop{b}}\,$to general form of vector as mentioned above.
We know length of any vector$\overset{\to }{\mathop{A}}\,=x\overset{\wedge }{\mathop{i}}\,+y\overset{\wedge }{\mathop{j}}\,+z\overset{\wedge }{\mathop{k}}\,$ is magnitude of this vector which is given by
$\left| \overset{\to }{\mathop{A}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}..............\left( 3 \right)$
Now, we can observe from $\overset{\to }{\mathop{b}}\,$ that it is summation of three triple product vectors i.e.
$\overset{\wedge }{\mathop{i}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{i}}\, \right),\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right),\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)$
We have vector triple product formula as
$\overset{\to }{\mathop{A}}\,\times \left( \overset{\to }{\mathop{B}}\,\times \overset{\to }{\mathop{C}}\, \right)=\left( \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{C}}\, \right)\overset{\to }{\mathop{B}}\,-\left( \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\, \right)\overset{\to }{\mathop{C}}\,..........\left( 4 \right)$
We can prove the above formula by taking three generalized vectors and solving LHS and RHS both.
Let us apply the vector triple product formula to $\overset{\to }{\mathop{b}}\,$.
We have
$\overset{\to }{\mathop{b}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{i}}\, \right)+\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right)+\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)$
Let us suppose
\[\begin{align}
& \overset{\to }{\mathop{m}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{i}}\, \right) \\
& \overset{\to }{\mathop{n}}\,=\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right) \\
& \overset{\to }{\mathop{p}}\,=\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right) \\
\end{align}\]
Therefore we can write $\overset{\to }{\mathop{b}}\,$in for of $\overset{\to }{\mathop{m}}\,,\overset{\to }{\mathop{n}}\,\And \overset{\to }{\mathop{p}}\,$ as $\overset{\to }{\mathop{b}}\,=\overset{\to }{\mathop{m}}\,+\overset{\to }{\mathop{n}}\,+\overset{\to }{\mathop{p}}\,.............\left( 5 \right)$
Now, Let us apply vector triple product formula from equation (4) to simplify $\overset{\to }{\mathop{m}}\,,\overset{\to }{\mathop{n}}\,\And \overset{\to }{\mathop{p}}\,$.
We need to know dot product of two vectors as well to solve above expression which is given by
$\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\left| \overset{\to }{\mathop{A}}\, \right|\left| \overset{\to }{\mathop{B}}\, \right|\cos \theta ....................\left( 6 \right)$
$\theta $ is the angle between $\overset{\to }{\mathop{A}}\,\And \overset{\to }{\mathop{B}}\,$ .
The angle between i and i (or the same vector) is 0. And angles between (i, j), (j, k) or (i, k) is $90{}^\circ $ which gives product 0.
Where, i, j, k are unit vector i.e. $\left| \overset{\wedge }{\mathop{i}}\, \right|=\left| \overset{\wedge }{\mathop{j}}\, \right|=\left| \overset{\wedge }{\mathop{k}}\, \right|=1$
$\begin{align}
& \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{i}}\,=\left| \overset{\wedge }{\mathop{i}}\, \right|\left| \overset{\wedge }{\mathop{i}}\, \right|\cos 0{}^\circ =1,\text{ similarly, }\overset{\wedge }{\mathop{j}}\,.\overset{\wedge }{\mathop{j}}\,=1\And \overset{\wedge }{\mathop{k}}\,.\overset{\wedge }{\mathop{k}}\,=1 \\
& \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{j}}\,=\left| \overset{\wedge }{\mathop{i}}\, \right|\left| \overset{\wedge }{\mathop{j}}\, \right|\cos 90{}^\circ =0,\text{similarly, }\overset{\wedge }{\mathop{j}}\,.\overset{\wedge }{\mathop{k}}\,=0\And \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{k}}\,=0 \\
\end{align}$
Therefore, we can write $\overset{\to }{\mathop{m}}\,,\overset{\to }{\mathop{n}}\,,\overset{\to }{\mathop{p}}\,$ as
$\overset{\to }{\mathop{m}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{i}}\, \right)=\left( \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{i}}\, \right)\overset{\to }{\mathop{a}}\,-\left( \overset{\wedge }{\mathop{i}}\,.\overset{\to }{\mathop{a}}\, \right)\overset{\wedge }{\mathop{i}}\,$
Substitute $\overset{\to }{\mathop{a}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,$ from equation (1),
We get
\[\overset{\to }{\mathop{m}}\,=\left( \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{i}}\, \right)\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)-\overset{\wedge }{\mathop{i}}\,.\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)\overset{\wedge }{\mathop{i}}\,\]
$\begin{align}
& m=\left| i \right|\left| i \right|\cos 0{}^\circ \left( i+2j+3\overset{\wedge }{\mathop{k}}\, \right)-\left( \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{k}}\, \right) \\
& m=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-\left( 1+0+0 \right)i \\
& m=2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,........................\left( 7 \right) \\
\end{align}$
Now coming to $\overset{\to }{\mathop{n}}\,,$ we get
$\overset{\to }{\mathop{n}}\,=\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right)=\left( \overset{\wedge }{\mathop{j}}\,.\overset{\wedge }{\mathop{j}}\, \right)\overset{\to }{\mathop{a}}\,-\left( \overset{\wedge }{\mathop{j}}\,-\overset{\to }{\mathop{a}}\, \right)\left( \overset{\wedge }{\mathop{j}}\, \right)$
Substitute $\overset{\to }{\mathop{a}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,$ from equation (1),
$\overset{\to }{\mathop{n}}\,=\left( \overset{\wedge }{\mathop{j}}\,.\overset{\wedge }{\mathop{j}}\, \right)\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-\overset{\wedge }{\mathop{j}}\,.\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)\overset{\wedge }{\mathop{j}}\,$
We can simplify $\overset{\to }{\mathop{n}}\,,$as
$\begin{align}
& \overset{\to }{\mathop{n}}\,=1\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{k}}\, \right)-\left( 0+2\left( 1 \right)+3\left( 0 \right) \right)\overset{\wedge }{\mathop{j}}\, \\
& \overset{\to }{\mathop{n}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-2\overset{\wedge }{\mathop{j}}\, \\
& \overset{\to }{\mathop{n}}\,=\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{k}}\,.....................\left( 8 \right) \\
\end{align}$
Similarly we can write $\overset{\to }{\mathop{p}}\,$ as;
$\overset{\to }{\mathop{p}}\,=\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)=\overset{\wedge }{\mathop{k}}\,.\overset{\wedge }{\mathop{k}}\,\overset{\to }{\mathop{a}}\,-\left( \overset{\wedge }{\mathop{k}}\,-\overset{\to }{\mathop{a}}\, \right)\overset{\wedge }{\mathop{k}}\,$
Substituting $\overrightarrow{a}=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{2j}}\,+\overset{\wedge }{\mathop{3k}}\,$ from equation (1) we can rewrite $\overset{\to }{\mathop{p}}\,$;
$\begin{align}
& \overset{\to }{\mathop{p}}\,=\left( \overset{\wedge }{\mathop{k}}\,.\overset{\wedge }{\mathop{k}}\, \right)\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-\overset{\wedge }{\mathop{k}}\,.\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{p}}\,=1\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)-\left( 0+2\left( 0 \right)+3\left( 1 \right) \right)\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{p}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-3\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{p}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,.............\left( 9 \right) \\
\end{align}$
We have,
$\overset{\to }{\mathop{b}}\,=\overset{\to }{\mathop{m}}\,+\overset{\to }{\mathop{n}}\,+\overset{\to }{\mathop{p}}\,$ from equation (5) and now substitute $\overset{\to }{\mathop{m}}\,,\overset{\to }{\mathop{n}}\,,\overset{\to }{\mathop{p}}\,$ from equations (7),(8),(9), we get;
\[\begin{align}
& \overset{\to }{\mathop{b}}\,=2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,+\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{k}}\,+\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\, \\
& \overset{\to }{\mathop{b}}\,=2\overset{\wedge }{\mathop{j}}\,+4\overset{\wedge }{\mathop{j}}\,+6\overset{\wedge }{\mathop{k}}\, \\
\end{align}\]
Now, coming to the question we need to find the length of $\overset{\to }{\mathop{b}}\,$or magnitude. Since, magnitude of any vector is given in equation (3),
Therefore, length of $\overset{\to }{\mathop{b}}\,$is
$\begin{align}
& \left| \overset{\to }{\mathop{b}}\, \right|=\sqrt{{{2}^{2}}+{{4}^{2}}+{{6}^{2}}} \\
& \left| \overset{\to }{\mathop{b}}\, \right|=\sqrt{4+16+36} \\
& \left| \overset{\to }{\mathop{b}}\, \right|=\sqrt{56}=\sqrt{4\times 14} \\
& \left| \overset{\to }{\mathop{b}}\, \right|=2\sqrt{14} \\
\end{align}$
Length of $\overset{\to }{\mathop{b}}\,$is $\sqrt{56}\text{ or }2\sqrt{14}$ .
Hence option D is the correct answer.
Note: Another approach for this question would be that we can put $\overset{\to }{\mathop{a}}\,$in $\overset{\to }{\mathop{b}}\,$and then find out cross products such as
$\overset{\to }{\mathop{b}}\,=i\times \left( \overset{\to }{\mathop{a}}\,\times i \right)+j\times \left( a\times j \right)+\overset{\wedge }{\mathop{k}}\,\times \left( a\times \overset{\wedge }{\mathop{k}}\, \right)$
Substitute$\text{ }\overset{\to }{\mathop{a}}\,=i+2j+3\overset{\wedge }{\mathop{k}}\,$
$\overset{\to }{\mathop{b}}\,=i\times \left( \left( i\times 2j\times 3\overset{\wedge }{\mathop{k}}\, \right)\times i \right)+j\times \left( \left( i+2j\times 3\overset{\wedge }{\mathop{k}}\, \right)\times \overset{\wedge }{\mathop{j}}\, \right)+\overset{\wedge }{\mathop{k}}\,\times \left( \left( i+2j\times 3\overset{\wedge }{\mathop{k}}\, \right)\times \overset{\wedge }{\mathop{k}}\, \right)$
Now, we can use formula of cross product of
$\overset{\to }{\mathop{A}}\,={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}\overset{\wedge }{\mathop{k}}\,\And \overset{\to }{\mathop{B}}\,={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}\overset{\wedge }{\mathop{k}}\,$ as
$\begin{align}
& \overset{\to }{\mathop{A}}\,\times \overset{\to }{\mathop{B}}\,={{\left| \begin{matrix}
i & j & \overset{\wedge }{\mathop{k}}\, \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|}^{-}} \\
& =\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)\overset{\wedge }{\mathop{i}}\,-\left( {{a}_{1}}{{b}_{3}}-{{b}_{1}}{{a}_{3}} \right)\overset{\wedge }{\mathop{j}}\,+\left( {{a}_{1}}{{b}_{2}}-{{b}_{1}}{{a}_{2}} \right)\overset{\wedge }{\mathop{k}}\, \\
\end{align}$
Use the above relation to simplify $\overset{\to }{\mathop{b}}\,$.
Above method would be longer than the given solution,
One can go wrong while using formula $\overset{\to }{\mathop{A}}\,\times \left( \overset{\to }{\mathop{B}}\,\times \overset{\to }{\mathop{C}}\, \right)=\left( \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{C}}\, \right)\overset{\to }{\mathop{B}}\,-\left( \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\, \right)\overset{\to }{\mathop{C}}\,$
Where $\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{C}}\,\And \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,$ are constants and multiplied with $\overset{\to }{\mathop{B}}\,\And \overset{\to }{\mathop{C}}\,$ respectively.
And
$\begin{align}
& \left( \overset{\to }{\mathop{A}}\,\times \overset{\to }{\mathop{B}}\, \right)\times \overset{\to }{\mathop{C}}\,=-\overset{\to }{\mathop{C}}\,\times \left( \overset{\to }{\mathop{A}}\,\times \overset{\to }{\mathop{B}}\, \right) \\
& =-\left( \overset{\to }{\mathop{C}}\,.\overset{\to }{\mathop{B}}\,.\overset{\to }{\mathop{A}}\,-\overset{\to }{\mathop{C}}\,.\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\, \right) \\
& =\overset{\to }{\mathop{C}}\,.\overset{\to }{\mathop{A}}\,\overset{\to }{\mathop{B}}\,-\overset{\to }{\mathop{C}}\,.\overset{\to }{\mathop{B}}\,\overset{\to }{\mathop{A}}\, \\
\end{align}$
One can get confuse between $\overset{\to }{\mathop{A}}\,\times \left( \overset{\to }{\mathop{B}}\,\times \overset{\to }{\mathop{C}}\, \right)\And \left( \overset{\to }{\mathop{A}}\,\times \overset{\to }{\mathop{B}}\, \right)\times \overset{\to }{\mathop{C.}}\,$
Here, we have vectors given
$\overrightarrow{a}=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{2j}}\,+\overset{\wedge }{\mathop{3k}}\,............\left( 1 \right)$
And
$\overset{\to }{\mathop{b}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( a\times \overset{\wedge }{\mathop{i}}\, \right)+\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right)+\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)...........\left( 2 \right)$
We need to find the length of the vector $\overset{\to }{\mathop{b}}\,$. Vector $\overset{\to }{\mathop{b}}\,$is not in the generalized form $x\overset{\wedge }{\mathop{i}}\,+y\overset{\wedge }{\mathop{i}}\,=\overset{\wedge }{\mathop{k}}\,,$ so first we need to convert $\overset{\to }{\mathop{b}}\,$to general form of vector as mentioned above.
We know length of any vector$\overset{\to }{\mathop{A}}\,=x\overset{\wedge }{\mathop{i}}\,+y\overset{\wedge }{\mathop{j}}\,+z\overset{\wedge }{\mathop{k}}\,$ is magnitude of this vector which is given by
$\left| \overset{\to }{\mathop{A}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}..............\left( 3 \right)$
Now, we can observe from $\overset{\to }{\mathop{b}}\,$ that it is summation of three triple product vectors i.e.
$\overset{\wedge }{\mathop{i}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{i}}\, \right),\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right),\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)$
We have vector triple product formula as
$\overset{\to }{\mathop{A}}\,\times \left( \overset{\to }{\mathop{B}}\,\times \overset{\to }{\mathop{C}}\, \right)=\left( \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{C}}\, \right)\overset{\to }{\mathop{B}}\,-\left( \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\, \right)\overset{\to }{\mathop{C}}\,..........\left( 4 \right)$
We can prove the above formula by taking three generalized vectors and solving LHS and RHS both.
Let us apply the vector triple product formula to $\overset{\to }{\mathop{b}}\,$.
We have
$\overset{\to }{\mathop{b}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{i}}\, \right)+\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right)+\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)$
Let us suppose
\[\begin{align}
& \overset{\to }{\mathop{m}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{i}}\, \right) \\
& \overset{\to }{\mathop{n}}\,=\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right) \\
& \overset{\to }{\mathop{p}}\,=\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right) \\
\end{align}\]
Therefore we can write $\overset{\to }{\mathop{b}}\,$in for of $\overset{\to }{\mathop{m}}\,,\overset{\to }{\mathop{n}}\,\And \overset{\to }{\mathop{p}}\,$ as $\overset{\to }{\mathop{b}}\,=\overset{\to }{\mathop{m}}\,+\overset{\to }{\mathop{n}}\,+\overset{\to }{\mathop{p}}\,.............\left( 5 \right)$
Now, Let us apply vector triple product formula from equation (4) to simplify $\overset{\to }{\mathop{m}}\,,\overset{\to }{\mathop{n}}\,\And \overset{\to }{\mathop{p}}\,$.
We need to know dot product of two vectors as well to solve above expression which is given by
$\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\left| \overset{\to }{\mathop{A}}\, \right|\left| \overset{\to }{\mathop{B}}\, \right|\cos \theta ....................\left( 6 \right)$
$\theta $ is the angle between $\overset{\to }{\mathop{A}}\,\And \overset{\to }{\mathop{B}}\,$ .
The angle between i and i (or the same vector) is 0. And angles between (i, j), (j, k) or (i, k) is $90{}^\circ $ which gives product 0.

Where, i, j, k are unit vector i.e. $\left| \overset{\wedge }{\mathop{i}}\, \right|=\left| \overset{\wedge }{\mathop{j}}\, \right|=\left| \overset{\wedge }{\mathop{k}}\, \right|=1$
$\begin{align}
& \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{i}}\,=\left| \overset{\wedge }{\mathop{i}}\, \right|\left| \overset{\wedge }{\mathop{i}}\, \right|\cos 0{}^\circ =1,\text{ similarly, }\overset{\wedge }{\mathop{j}}\,.\overset{\wedge }{\mathop{j}}\,=1\And \overset{\wedge }{\mathop{k}}\,.\overset{\wedge }{\mathop{k}}\,=1 \\
& \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{j}}\,=\left| \overset{\wedge }{\mathop{i}}\, \right|\left| \overset{\wedge }{\mathop{j}}\, \right|\cos 90{}^\circ =0,\text{similarly, }\overset{\wedge }{\mathop{j}}\,.\overset{\wedge }{\mathop{k}}\,=0\And \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{k}}\,=0 \\
\end{align}$
Therefore, we can write $\overset{\to }{\mathop{m}}\,,\overset{\to }{\mathop{n}}\,,\overset{\to }{\mathop{p}}\,$ as
$\overset{\to }{\mathop{m}}\,=\overset{\wedge }{\mathop{i}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{i}}\, \right)=\left( \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{i}}\, \right)\overset{\to }{\mathop{a}}\,-\left( \overset{\wedge }{\mathop{i}}\,.\overset{\to }{\mathop{a}}\, \right)\overset{\wedge }{\mathop{i}}\,$
Substitute $\overset{\to }{\mathop{a}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,$ from equation (1),
We get
\[\overset{\to }{\mathop{m}}\,=\left( \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{i}}\, \right)\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)-\overset{\wedge }{\mathop{i}}\,.\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)\overset{\wedge }{\mathop{i}}\,\]
$\begin{align}
& m=\left| i \right|\left| i \right|\cos 0{}^\circ \left( i+2j+3\overset{\wedge }{\mathop{k}}\, \right)-\left( \overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{i}}\,.\overset{\wedge }{\mathop{k}}\, \right) \\
& m=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-\left( 1+0+0 \right)i \\
& m=2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,........................\left( 7 \right) \\
\end{align}$
Now coming to $\overset{\to }{\mathop{n}}\,,$ we get
$\overset{\to }{\mathop{n}}\,=\overset{\wedge }{\mathop{j}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{j}}\, \right)=\left( \overset{\wedge }{\mathop{j}}\,.\overset{\wedge }{\mathop{j}}\, \right)\overset{\to }{\mathop{a}}\,-\left( \overset{\wedge }{\mathop{j}}\,-\overset{\to }{\mathop{a}}\, \right)\left( \overset{\wedge }{\mathop{j}}\, \right)$
Substitute $\overset{\to }{\mathop{a}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,$ from equation (1),
$\overset{\to }{\mathop{n}}\,=\left( \overset{\wedge }{\mathop{j}}\,.\overset{\wedge }{\mathop{j}}\, \right)\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-\overset{\wedge }{\mathop{j}}\,.\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)\overset{\wedge }{\mathop{j}}\,$
We can simplify $\overset{\to }{\mathop{n}}\,,$as
$\begin{align}
& \overset{\to }{\mathop{n}}\,=1\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{k}}\, \right)-\left( 0+2\left( 1 \right)+3\left( 0 \right) \right)\overset{\wedge }{\mathop{j}}\, \\
& \overset{\to }{\mathop{n}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-2\overset{\wedge }{\mathop{j}}\, \\
& \overset{\to }{\mathop{n}}\,=\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{k}}\,.....................\left( 8 \right) \\
\end{align}$
Similarly we can write $\overset{\to }{\mathop{p}}\,$ as;
$\overset{\to }{\mathop{p}}\,=\overset{\wedge }{\mathop{k}}\,\times \left( \overset{\to }{\mathop{a}}\,\times \overset{\wedge }{\mathop{k}}\, \right)=\overset{\wedge }{\mathop{k}}\,.\overset{\wedge }{\mathop{k}}\,\overset{\to }{\mathop{a}}\,-\left( \overset{\wedge }{\mathop{k}}\,-\overset{\to }{\mathop{a}}\, \right)\overset{\wedge }{\mathop{k}}\,$
Substituting $\overrightarrow{a}=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{2j}}\,+\overset{\wedge }{\mathop{3k}}\,$ from equation (1) we can rewrite $\overset{\to }{\mathop{p}}\,$;
$\begin{align}
& \overset{\to }{\mathop{p}}\,=\left( \overset{\wedge }{\mathop{k}}\,.\overset{\wedge }{\mathop{k}}\, \right)\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-\overset{\wedge }{\mathop{k}}\,.\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{p}}\,=1\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)-\left( 0+2\left( 0 \right)+3\left( 1 \right) \right)\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{p}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,-3\overset{\wedge }{\mathop{k}}\, \\
& \overset{\to }{\mathop{p}}\,=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,.............\left( 9 \right) \\
\end{align}$
We have,
$\overset{\to }{\mathop{b}}\,=\overset{\to }{\mathop{m}}\,+\overset{\to }{\mathop{n}}\,+\overset{\to }{\mathop{p}}\,$ from equation (5) and now substitute $\overset{\to }{\mathop{m}}\,,\overset{\to }{\mathop{n}}\,,\overset{\to }{\mathop{p}}\,$ from equations (7),(8),(9), we get;
\[\begin{align}
& \overset{\to }{\mathop{b}}\,=2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\,+\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{k}}\,+\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\, \\
& \overset{\to }{\mathop{b}}\,=2\overset{\wedge }{\mathop{j}}\,+4\overset{\wedge }{\mathop{j}}\,+6\overset{\wedge }{\mathop{k}}\, \\
\end{align}\]
Now, coming to the question we need to find the length of $\overset{\to }{\mathop{b}}\,$or magnitude. Since, magnitude of any vector is given in equation (3),
Therefore, length of $\overset{\to }{\mathop{b}}\,$is
$\begin{align}
& \left| \overset{\to }{\mathop{b}}\, \right|=\sqrt{{{2}^{2}}+{{4}^{2}}+{{6}^{2}}} \\
& \left| \overset{\to }{\mathop{b}}\, \right|=\sqrt{4+16+36} \\
& \left| \overset{\to }{\mathop{b}}\, \right|=\sqrt{56}=\sqrt{4\times 14} \\
& \left| \overset{\to }{\mathop{b}}\, \right|=2\sqrt{14} \\
\end{align}$
Length of $\overset{\to }{\mathop{b}}\,$is $\sqrt{56}\text{ or }2\sqrt{14}$ .
Hence option D is the correct answer.
Note: Another approach for this question would be that we can put $\overset{\to }{\mathop{a}}\,$in $\overset{\to }{\mathop{b}}\,$and then find out cross products such as
$\overset{\to }{\mathop{b}}\,=i\times \left( \overset{\to }{\mathop{a}}\,\times i \right)+j\times \left( a\times j \right)+\overset{\wedge }{\mathop{k}}\,\times \left( a\times \overset{\wedge }{\mathop{k}}\, \right)$
Substitute$\text{ }\overset{\to }{\mathop{a}}\,=i+2j+3\overset{\wedge }{\mathop{k}}\,$
$\overset{\to }{\mathop{b}}\,=i\times \left( \left( i\times 2j\times 3\overset{\wedge }{\mathop{k}}\, \right)\times i \right)+j\times \left( \left( i+2j\times 3\overset{\wedge }{\mathop{k}}\, \right)\times \overset{\wedge }{\mathop{j}}\, \right)+\overset{\wedge }{\mathop{k}}\,\times \left( \left( i+2j\times 3\overset{\wedge }{\mathop{k}}\, \right)\times \overset{\wedge }{\mathop{k}}\, \right)$
Now, we can use formula of cross product of
$\overset{\to }{\mathop{A}}\,={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}\overset{\wedge }{\mathop{k}}\,\And \overset{\to }{\mathop{B}}\,={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}\overset{\wedge }{\mathop{k}}\,$ as
$\begin{align}
& \overset{\to }{\mathop{A}}\,\times \overset{\to }{\mathop{B}}\,={{\left| \begin{matrix}
i & j & \overset{\wedge }{\mathop{k}}\, \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|}^{-}} \\
& =\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)\overset{\wedge }{\mathop{i}}\,-\left( {{a}_{1}}{{b}_{3}}-{{b}_{1}}{{a}_{3}} \right)\overset{\wedge }{\mathop{j}}\,+\left( {{a}_{1}}{{b}_{2}}-{{b}_{1}}{{a}_{2}} \right)\overset{\wedge }{\mathop{k}}\, \\
\end{align}$
Use the above relation to simplify $\overset{\to }{\mathop{b}}\,$.
Above method would be longer than the given solution,
One can go wrong while using formula $\overset{\to }{\mathop{A}}\,\times \left( \overset{\to }{\mathop{B}}\,\times \overset{\to }{\mathop{C}}\, \right)=\left( \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{C}}\, \right)\overset{\to }{\mathop{B}}\,-\left( \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\, \right)\overset{\to }{\mathop{C}}\,$
Where $\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{C}}\,\And \overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,$ are constants and multiplied with $\overset{\to }{\mathop{B}}\,\And \overset{\to }{\mathop{C}}\,$ respectively.
And
$\begin{align}
& \left( \overset{\to }{\mathop{A}}\,\times \overset{\to }{\mathop{B}}\, \right)\times \overset{\to }{\mathop{C}}\,=-\overset{\to }{\mathop{C}}\,\times \left( \overset{\to }{\mathop{A}}\,\times \overset{\to }{\mathop{B}}\, \right) \\
& =-\left( \overset{\to }{\mathop{C}}\,.\overset{\to }{\mathop{B}}\,.\overset{\to }{\mathop{A}}\,-\overset{\to }{\mathop{C}}\,.\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\, \right) \\
& =\overset{\to }{\mathop{C}}\,.\overset{\to }{\mathop{A}}\,\overset{\to }{\mathop{B}}\,-\overset{\to }{\mathop{C}}\,.\overset{\to }{\mathop{B}}\,\overset{\to }{\mathop{A}}\, \\
\end{align}$
One can get confuse between $\overset{\to }{\mathop{A}}\,\times \left( \overset{\to }{\mathop{B}}\,\times \overset{\to }{\mathop{C}}\, \right)\And \left( \overset{\to }{\mathop{A}}\,\times \overset{\to }{\mathop{B}}\, \right)\times \overset{\to }{\mathop{C.}}\,$
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
