
If $\overrightarrow{a}$ and $\overrightarrow{b}$ are two, unit vectors such that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$, such that $\left| \overrightarrow{c} \right|=2$, then find the value of $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ is
(a) 0
(b) $\pm 1$
(c) 3
(d) -3
Answer
431.1k+ views
Hint: Using the given equation, we must find the values of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ and $\overrightarrow{a}\cdot \overrightarrow{c}$. Then, with the help of these values, and the expansion of scalar triple product as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$, we can find the value of this triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$.
Complete step-by-step solution:
Here, we are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$.
Let us subtract $\overrightarrow{a}$ from both sides of the above equation. Hence, we write
$\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)-\overrightarrow{a}=\overrightarrow{c}-\overrightarrow{a}$.
Thus, we can also write the above equation as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}-\overrightarrow{a}...\left( i \right)$
We need to find the value of $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$. We know that $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ is the scalar triple product of $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$, and this scalar triple product is defined as $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)$ or $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$.
Thus, we can write this mathematically, as
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$
Using the value of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ from equation (i), we can write,
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{c}-\overrightarrow{a} \right)\cdot \overrightarrow{c}$
We know that the dot product is distributive. Hence, using the distributive property, we can write
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\overrightarrow{c}\cdot \overrightarrow{c}-\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left| \overrightarrow{c} \right|}^{2}}-\overrightarrow{a}\cdot \overrightarrow{c}...\left( ii \right)$
Now, we need to find the value of $\overrightarrow{a}\cdot \overrightarrow{c}$.
We are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$. Hence, we can also write
$\overrightarrow{a}\cdot \left\{ \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\}=\overrightarrow{a}\cdot \overrightarrow{c}$
Again, using the distributive property, we can write
$\overrightarrow{a}\cdot \overrightarrow{a}+\overrightarrow{a}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
${{\left| \overrightarrow{a} \right|}^{2}}+\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=\overrightarrow{a}\cdot \overrightarrow{c}$
We know that if any two vectors in the scalar triple product are the same, then its value becomes 0. Thus, we have
$1+0=\overrightarrow{a}\cdot \overrightarrow{c}$
Hence, $\overrightarrow{a}\cdot \overrightarrow{c}=1$.
Using the above value in equation (ii), we get
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left( 2 \right)}^{2}}-1$
And so, $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=3$.
Hence, option (c) is the correct answer.
Note: We can see that $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$ can be expressed as $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{a} \right)\cdot \overrightarrow{c}$, and since $\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0$, we can write $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=0$. We must, also, remember that the scalar triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ can be expressed in multiple forms, like $\left[ \overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a} \right]$ and $\left[ \overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$.
Complete step-by-step solution:
Here, we are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$.
Let us subtract $\overrightarrow{a}$ from both sides of the above equation. Hence, we write
$\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)-\overrightarrow{a}=\overrightarrow{c}-\overrightarrow{a}$.
Thus, we can also write the above equation as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}-\overrightarrow{a}...\left( i \right)$
We need to find the value of $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$. We know that $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ is the scalar triple product of $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$, and this scalar triple product is defined as $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)$ or $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$.
Thus, we can write this mathematically, as
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$
Using the value of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ from equation (i), we can write,
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{c}-\overrightarrow{a} \right)\cdot \overrightarrow{c}$
We know that the dot product is distributive. Hence, using the distributive property, we can write
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\overrightarrow{c}\cdot \overrightarrow{c}-\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left| \overrightarrow{c} \right|}^{2}}-\overrightarrow{a}\cdot \overrightarrow{c}...\left( ii \right)$
Now, we need to find the value of $\overrightarrow{a}\cdot \overrightarrow{c}$.
We are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$. Hence, we can also write
$\overrightarrow{a}\cdot \left\{ \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\}=\overrightarrow{a}\cdot \overrightarrow{c}$
Again, using the distributive property, we can write
$\overrightarrow{a}\cdot \overrightarrow{a}+\overrightarrow{a}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
${{\left| \overrightarrow{a} \right|}^{2}}+\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=\overrightarrow{a}\cdot \overrightarrow{c}$
We know that if any two vectors in the scalar triple product are the same, then its value becomes 0. Thus, we have
$1+0=\overrightarrow{a}\cdot \overrightarrow{c}$
Hence, $\overrightarrow{a}\cdot \overrightarrow{c}=1$.
Using the above value in equation (ii), we get
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left( 2 \right)}^{2}}-1$
And so, $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=3$.
Hence, option (c) is the correct answer.
Note: We can see that $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$ can be expressed as $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{a} \right)\cdot \overrightarrow{c}$, and since $\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0$, we can write $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=0$. We must, also, remember that the scalar triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ can be expressed in multiple forms, like $\left[ \overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a} \right]$ and $\left[ \overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

Which animal never drinks water in its entire life class 12 biology CBSE

Iris is a part of A Sclerotic B Choroid Uvea C Choroid class 12 biology CBSE

A night bird owl can see very well in the night but class 12 physics CBSE

A simple microscope has A 2 convex lens B 2 concave class 12 physics CBSE
