
If \[\overrightarrow r = x\widehat i + y\widehat j + z\widehat k,\,find\,(\overrightarrow r \times i) \cdot (\overrightarrow r \times j) + xy\] .
Answer
586.2k+ views
Hint: It is clear that you are given this problem based on vector quantity. What do you understand by a vector? Vector quantity is a quantity that has a magnitude and direction. In this sum, unit vectors are also there. A unit vector is a vector of which the magnitude is one. It is also called a direction vector. \[\widehat i,\widehat j,\widehat k\] are on the direction x-axis and y-axis and z-axis respectively. You should know about the cross product and dot product of vectors to do this sum.
Step wise solution:
Given data: The \[\overrightarrow r \] is given by,
\[\overrightarrow r = x\widehat i + y\widehat j + z\widehat k\]
And we need to find the value of \[(\overrightarrow r \times i) \cdot (\overrightarrow r \times j) + xy\] .
We will find out the value of \[(\overrightarrow r \times \widehat i)\]
$
(\overrightarrow r \times \widehat i) = (x\widehat i + y\widehat j + z\widehat k) \times \widehat i\\
(\overrightarrow r \times \widehat i) = (x\widehat i) \times (\widehat i) + (y\widehat j) \times (\widehat i) + (z\widehat k) \times (\widehat i)
$
We know the cross product of unit vectors are given as
$
\widehat k \times \widehat i = \widehat j\\
\widehat j \times \widehat i = \widehat k\\
\widehat i \times \widehat i = 0
$
Now,
$
(\overrightarrow r \times \widehat i) = x(\widehat i \times \widehat i) + y(\widehat j \times \widehat i) + z(\widehat k \times \widehat i)\\
\Rightarrow (\overrightarrow r \times \widehat i) = 0 + y( - \widehat k) + z(\widehat j)\\
\Rightarrow (\overrightarrow r \times \widehat i) = - y\widehat k + z(\widehat j)
$
To calculate the value of \[(\overrightarrow r \times \widehat j)\]
$
(\overrightarrow r \times \widehat j) = (x\widehat i + y\widehat j + z\widehat k) \times \widehat j\\
\Rightarrow (\overrightarrow r \times \widehat j) = x(\widehat j \times \widehat i) + y(\widehat j \times \widehat j) + z(\widehat k \times \widehat j)
$
We know, the cross-product formula of unit vectors is,
$
\widehat k \times \widehat j = - \widehat i\\
\widehat j \times \widehat i = \widehat k\\
\widehat j \times \widehat j = 0
$
Now,
$
(\overrightarrow r \times \widehat j) = (x\widehat k + 0 + z( - \widehat i))\\
(\overrightarrow r \times \widehat j) = x\widehat k - z\widehat i
$
We will calculate the dot product of \[(\overrightarrow r \times \widehat i)\,\,and\,\,(\overrightarrow r \times \widehat j)\] .
$
(\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = ( - y\widehat k + z(\widehat j)) \cdot (x\widehat k - z\widehat i)\\
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = - y\widehat k \cdot (x\widehat k - z\widehat k) + z\widehat j(x\widehat k - z\widehat i)\\
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = - xy(\widehat k \cdot \widehat k) + yz(\widehat k \cdot \widehat k) + xz(\widehat j \cdot \widehat k) - {z^2}\left( {\widehat j \cdot \widehat i} \right)
$
We knew, the rules of the dot product of two unit vectors are
$
\widehat i \cdot \widehat i = \widehat j \cdot \widehat j = \widehat k \cdot \widehat k = 1\,\\
\widehat i \cdot \widehat j = \widehat j \cdot \widehat k = \widehat k \cdot \widehat i = 0
$
and
$
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = - xy(1) + yz(1) + 0 + 0\\
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = - xy + yz
$
We will find the required value of \[(\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) + xy\]
Now,
$
(\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) + xy = - {{xy}} + yz + {{xy}}\\
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) + xy = yz
$
Hence, the value of \[(\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) + xy\,\,is\,\,yz\]
Note: Students always make mistakes in the dot products of unit vectors and cross products of that. Also, you must have the basic knowledge of vectors and unit vectors to do this numerical.
Step wise solution:
Given data: The \[\overrightarrow r \] is given by,
\[\overrightarrow r = x\widehat i + y\widehat j + z\widehat k\]
And we need to find the value of \[(\overrightarrow r \times i) \cdot (\overrightarrow r \times j) + xy\] .
We will find out the value of \[(\overrightarrow r \times \widehat i)\]
$
(\overrightarrow r \times \widehat i) = (x\widehat i + y\widehat j + z\widehat k) \times \widehat i\\
(\overrightarrow r \times \widehat i) = (x\widehat i) \times (\widehat i) + (y\widehat j) \times (\widehat i) + (z\widehat k) \times (\widehat i)
$
We know the cross product of unit vectors are given as
$
\widehat k \times \widehat i = \widehat j\\
\widehat j \times \widehat i = \widehat k\\
\widehat i \times \widehat i = 0
$
Now,
$
(\overrightarrow r \times \widehat i) = x(\widehat i \times \widehat i) + y(\widehat j \times \widehat i) + z(\widehat k \times \widehat i)\\
\Rightarrow (\overrightarrow r \times \widehat i) = 0 + y( - \widehat k) + z(\widehat j)\\
\Rightarrow (\overrightarrow r \times \widehat i) = - y\widehat k + z(\widehat j)
$
To calculate the value of \[(\overrightarrow r \times \widehat j)\]
$
(\overrightarrow r \times \widehat j) = (x\widehat i + y\widehat j + z\widehat k) \times \widehat j\\
\Rightarrow (\overrightarrow r \times \widehat j) = x(\widehat j \times \widehat i) + y(\widehat j \times \widehat j) + z(\widehat k \times \widehat j)
$
We know, the cross-product formula of unit vectors is,
$
\widehat k \times \widehat j = - \widehat i\\
\widehat j \times \widehat i = \widehat k\\
\widehat j \times \widehat j = 0
$
Now,
$
(\overrightarrow r \times \widehat j) = (x\widehat k + 0 + z( - \widehat i))\\
(\overrightarrow r \times \widehat j) = x\widehat k - z\widehat i
$
We will calculate the dot product of \[(\overrightarrow r \times \widehat i)\,\,and\,\,(\overrightarrow r \times \widehat j)\] .
$
(\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = ( - y\widehat k + z(\widehat j)) \cdot (x\widehat k - z\widehat i)\\
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = - y\widehat k \cdot (x\widehat k - z\widehat k) + z\widehat j(x\widehat k - z\widehat i)\\
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = - xy(\widehat k \cdot \widehat k) + yz(\widehat k \cdot \widehat k) + xz(\widehat j \cdot \widehat k) - {z^2}\left( {\widehat j \cdot \widehat i} \right)
$
We knew, the rules of the dot product of two unit vectors are
$
\widehat i \cdot \widehat i = \widehat j \cdot \widehat j = \widehat k \cdot \widehat k = 1\,\\
\widehat i \cdot \widehat j = \widehat j \cdot \widehat k = \widehat k \cdot \widehat i = 0
$
and
$
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = - xy(1) + yz(1) + 0 + 0\\
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) = - xy + yz
$
We will find the required value of \[(\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) + xy\]
Now,
$
(\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) + xy = - {{xy}} + yz + {{xy}}\\
\Rightarrow (\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) + xy = yz
$
Hence, the value of \[(\overrightarrow r \times \widehat i)\, \cdot \,(\overrightarrow r \times \widehat j) + xy\,\,is\,\,yz\]
Note: Students always make mistakes in the dot products of unit vectors and cross products of that. Also, you must have the basic knowledge of vectors and unit vectors to do this numerical.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

