
If \[\overrightarrow a = 2\widehat i + \widehat j + 3\widehat k,\overrightarrow b = p\widehat i + \widehat j + q\widehat k\] and\[\overrightarrow b \times \overrightarrow a = 0\] then
1) \[(p,q) = (2,3)\]
2) \[(p,q) = ( - 2, - 3)\]
3) \[(p,q) = (1,2)\]
4) \[(p,q) = ( - 1, - 2)\]
Answer
586.8k+ views
Hint: Use the basic formula for the cross product of 2 vectors \[\overrightarrow x \times \overrightarrow y = \left| {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right|\]
and equate it to 0 to find the value.
Complete step-by-step answer:
Given, \[\overrightarrow a = 2\widehat i + \widehat j + 3\widehat k,\overrightarrow b = p\widehat i + \widehat j + q\widehat k\] and \[\overrightarrow b \times \overrightarrow a = 0\]
We know cross product of any 2 vectors is given by
\[\overrightarrow x \times \overrightarrow y = \left| {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right|\]where \[\overrightarrow x = {x_1}\widehat i + {x_2}\widehat j + {x_3}\widehat k\]and \[\overrightarrow y = {y_1}\widehat i + {y_2}\widehat j + {y_3}\widehat k\]
Now, \[\overrightarrow b \times \overrightarrow a = \left| {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
p&1&q \\
2&1&3
\end{array}} \right| = 0\]
\[ \Rightarrow (3 - q)\widehat i - (3p - 2q)\widehat j + (p - 2)\widehat k = 0\widehat i + 0\widehat j + 0\widehat k\]
\[
\Rightarrow 3 - q = 0 \\
\Rightarrow q = 3 \\
\]
Also,
\[
\Rightarrow p - 2 = 0 \\
\Rightarrow p = 2 \\
\]
Therefore, \[(p,q) = (2,3)\]
Hence, option 1) \[(p,q) = (2,3)\] is correct.
Note: Whenever the cross product of 2 vectors is equal to 0 then it implies the cross product is equal to \[0\widehat i + 0\widehat j + 0\widehat k\], the zero vector
{\widehat i}&{\widehat j}&{\widehat k} \\
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right|\]
and equate it to 0 to find the value.
Complete step-by-step answer:
Given, \[\overrightarrow a = 2\widehat i + \widehat j + 3\widehat k,\overrightarrow b = p\widehat i + \widehat j + q\widehat k\] and \[\overrightarrow b \times \overrightarrow a = 0\]
We know cross product of any 2 vectors is given by
\[\overrightarrow x \times \overrightarrow y = \left| {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right|\]where \[\overrightarrow x = {x_1}\widehat i + {x_2}\widehat j + {x_3}\widehat k\]and \[\overrightarrow y = {y_1}\widehat i + {y_2}\widehat j + {y_3}\widehat k\]
Now, \[\overrightarrow b \times \overrightarrow a = \left| {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
p&1&q \\
2&1&3
\end{array}} \right| = 0\]
\[ \Rightarrow (3 - q)\widehat i - (3p - 2q)\widehat j + (p - 2)\widehat k = 0\widehat i + 0\widehat j + 0\widehat k\]
\[
\Rightarrow 3 - q = 0 \\
\Rightarrow q = 3 \\
\]
Also,
\[
\Rightarrow p - 2 = 0 \\
\Rightarrow p = 2 \\
\]
Therefore, \[(p,q) = (2,3)\]
Hence, option 1) \[(p,q) = (2,3)\] is correct.
Note: Whenever the cross product of 2 vectors is equal to 0 then it implies the cross product is equal to \[0\widehat i + 0\widehat j + 0\widehat k\], the zero vector
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

SiO2GeO2 SnOand PbOare respectively A acidic amphoteric class 11 chemistry CBSE

