
If $ \overline a ,\overline b ,\overline c $ are position vectors of the vertices $ A,B,C $ of $ \Delta ABC. $ If $ \overline r $ is the position vector of a point $ P $ such that \[\left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c \] then the point $ P $ is
A.Centroid of $ \Delta ABC $
B.Orthocentre of $ \Delta ABC $
C.Circumcentre of $ \Delta ABC $
D.Incentre of $ \Delta ABC $
Answer
525.6k+ views
Hint: For solving this particular question, we have to construct a triangle then we have to write the sides of the triangle in terms of position vector. After that we have to substitute the values in the given expression \[\left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c \] .
Complete step-by-step answer:
Let us consider a $ \Delta ABC $ as shown in the given figure ,
Here vertex ‘A’ of the above $ \Delta ABC $ is equal to position vector $ \overline a $ ,
vertex ‘B’ of the above $ \Delta ABC $ is equal to position vector $ \overline b $ , and
vertex ‘C’ of the above $ \Delta ABC $ is equal to position vector $ \overline c $ .
Now, the side ‘AB’ of the $ \Delta ABC $ is equal to $ \left| {\overline a - \overline b } \right| $ ,
the side ‘BC’ of the $ \Delta ABC $ is equal to $ \left| {\overline b - \overline c } \right| $ ,
the side ‘CA’ of the $ \Delta ABC $ is equal to $ \left| {\overline c - \overline a } \right| $ ,
It is given that $ \overline r $ is the position vector of a point $ P $ such that \[\left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c \]
Now substitute the corresponding values, we will get ,
\[
\Rightarrow \left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c \\
\Rightarrow (BC + CA + AB)\overline r = BC\overline a + CA\overline b + AB\overline c \\
\Rightarrow \overline r = \dfrac{{BC\overline a + CA\overline b + AB\overline c }}{{(AB + BC + CA)}} \\
\]
where ‘AB’ , ‘BC’ , ‘CA’ represent the magnitude of the sides and \[\overline a ,{\text{ }}\overline b {\text{ and }}\overline c \] are the position vectors of ‘A’, ‘B’ and ‘C’ points respectively.
Here if we compare the equation of $ \overline r $ with the vector formula for incenter in a $ \Delta PQR\;{\text{where}}\;\overline p ,\;\overline q \;{\text{and}}\;\overline r $ are position vectors of vertices $ P,\;Q\;{\text{and}}\;R $ respectively is given as
Position vector of incenter $ = \dfrac{{QR.\overline p + RP.\overline q + PQ.\overline r }}{{PQ + QR + RP}},\;{\text{where}}\;PQ,\;QR\;{\text{and}}\;RP $ are magnitude of sides,
So we can see that the above equation is matching with the formula for incenter of a triangle,
Therefore, we can say that point ‘P’ is the incenter
Then,
We can say that ‘D’ is the correct option.
So, the correct answer is “Option C”.
Note: We must know that for a point say $ P $ to be Incentre we have the following expression ,
\[\overline r = \dfrac{{AB\overline a + BC\overline b + CA\overline c }}{{(AB + BC + CA)}}\] . Where $ \overline r $ is the position vector of point $ P $ , where ‘AB’ , ‘BC’ , ‘CA’ represent the magnitude of the sides and \[\overline a ,{\text{ }}\overline b {\text{ and }}\overline c \] are the position vectors of ‘A’, ‘B’ and ‘C’ points respectively and the denominator \[AB + BC + CA\] is nothing but the perimeter of the given triangle.
Complete step-by-step answer:
Let us consider a $ \Delta ABC $ as shown in the given figure ,
Here vertex ‘A’ of the above $ \Delta ABC $ is equal to position vector $ \overline a $ ,
vertex ‘B’ of the above $ \Delta ABC $ is equal to position vector $ \overline b $ , and
vertex ‘C’ of the above $ \Delta ABC $ is equal to position vector $ \overline c $ .
Now, the side ‘AB’ of the $ \Delta ABC $ is equal to $ \left| {\overline a - \overline b } \right| $ ,
the side ‘BC’ of the $ \Delta ABC $ is equal to $ \left| {\overline b - \overline c } \right| $ ,
the side ‘CA’ of the $ \Delta ABC $ is equal to $ \left| {\overline c - \overline a } \right| $ ,
It is given that $ \overline r $ is the position vector of a point $ P $ such that \[\left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c \]
Now substitute the corresponding values, we will get ,
\[
\Rightarrow \left( {\left| {\overline b - \overline c } \right| + \left| {\overline c - \overline a } \right| + \left| {\overline a - \overline b } \right|} \right)\overline r = \left| {\overline b - \overline c } \right|\overline a + \left| {\overline c - \overline a } \right|\overline b + \left| {\overline a - \overline b } \right|\overline c \\
\Rightarrow (BC + CA + AB)\overline r = BC\overline a + CA\overline b + AB\overline c \\
\Rightarrow \overline r = \dfrac{{BC\overline a + CA\overline b + AB\overline c }}{{(AB + BC + CA)}} \\
\]
where ‘AB’ , ‘BC’ , ‘CA’ represent the magnitude of the sides and \[\overline a ,{\text{ }}\overline b {\text{ and }}\overline c \] are the position vectors of ‘A’, ‘B’ and ‘C’ points respectively.
Here if we compare the equation of $ \overline r $ with the vector formula for incenter in a $ \Delta PQR\;{\text{where}}\;\overline p ,\;\overline q \;{\text{and}}\;\overline r $ are position vectors of vertices $ P,\;Q\;{\text{and}}\;R $ respectively is given as
Position vector of incenter $ = \dfrac{{QR.\overline p + RP.\overline q + PQ.\overline r }}{{PQ + QR + RP}},\;{\text{where}}\;PQ,\;QR\;{\text{and}}\;RP $ are magnitude of sides,
So we can see that the above equation is matching with the formula for incenter of a triangle,
Therefore, we can say that point ‘P’ is the incenter
Then,
We can say that ‘D’ is the correct option.
So, the correct answer is “Option C”.
Note: We must know that for a point say $ P $ to be Incentre we have the following expression ,
\[\overline r = \dfrac{{AB\overline a + BC\overline b + CA\overline c }}{{(AB + BC + CA)}}\] . Where $ \overline r $ is the position vector of point $ P $ , where ‘AB’ , ‘BC’ , ‘CA’ represent the magnitude of the sides and \[\overline a ,{\text{ }}\overline b {\text{ and }}\overline c \] are the position vectors of ‘A’, ‘B’ and ‘C’ points respectively and the denominator \[AB + BC + CA\] is nothing but the perimeter of the given triangle.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

