
If $\overline a $ and $\overline b $ are vectors, satisfying $\left| {\overline a } \right| = \left| {\overline b } \right| = 5$ and $\left( {\overline a ,\overline b } \right) = 45^\circ $ , then the area of the triangle constructed with vectors $\overline a - 2\overline b $ and $3\overline a + 2\overline b $ is
A. $50\sqrt 2 $ sq. units
B. $5\sqrt 5 $ sq. units
C. $4\sqrt 5 $ sq. units
D. $3\sqrt 5 $ sq. units
Answer
585k+ views
Hint: The area of triangle formed by any two vectors is given by $\dfrac{1}{2} \times $ | cross product of two vectors |.
Now, do the cross product of the two given vectors and take the magnitude of the cross product.
After that, divide the above result by 2 to get the answer.
Complete step-by-step answer:
We are given that, $\overline a $ and $\overline b $ are vectors, satisfying $\left| {\overline a } \right| = \left| {\overline b } \right| = 5$ and $\left( {\overline a ,\overline b } \right) = 45^\circ $ .
Now, it is said that, the vectors $\overline a - 2\overline b $ and $3\overline a + 2\overline b $ form a triangle.
The area of triangle formed by vectors is $\dfrac{1}{2} \times $ | cross product of two vectors |
$\therefore \Delta = \dfrac{1}{2}\left| {\left( {\overline a - 2\overline b } \right) \times \left( {3\overline a + 2\overline b } \right)} \right|$
$ = \dfrac{1}{2} \times \left| {\overline a \times 3\overline a + \overline a \times 2\overline b - 2\overline b \times 3\overline a - 2\overline b \times 2\overline b } \right|$
Applying the property $\overline a \times \overline a = 0$ ,
\[\therefore \Delta = \dfrac{1}{2}\left| {\overline a \times 2\overline b - 2\overline b \times 3\overline a } \right|\]
Also, $\overline a \times \overline b = - \overline b \times \overline a $
\[\therefore \Delta = \dfrac{1}{2}\left| {\overline a \times 2\overline b + 3\overline a \times 2\overline b } \right|\]
Applying $\overline a \times \overline b = ab\sin \theta $
$\therefore \Delta = \dfrac{1}{2}\left| {2ab\sin 45^\circ + 6ab\sin 45^\circ } \right|$
$
= \dfrac{1}{2}\left| {8ab\sin 45^\circ } \right| \\
= \dfrac{1}{2}\left| {8ab \times \dfrac{1}{{\sqrt 2 }}} \right| \\
$
Now, $\left| {\overline a } \right| = \left| {\overline b } \right| = 5$
$\therefore \Delta = \dfrac{1}{2} \times 8 \times 5 \times 5 \times \dfrac{1}{{\sqrt 2 }}$
$
= \dfrac{{100}}{{\sqrt 2 }} \\
= 50\sqrt 2 \\
$
Thus, the area of the triangle constructed with vectors $\overline a - 2\overline b $ and $3\overline a + 2\overline b $ is $50\sqrt 2 $ sq. units.
So, Option (A) is correct.
Note: We have written some properties of cross product, which will be useful to us while solving such types of questions.
1. $\overline a \times \overline a = 0$
2.$\overline a \times \overline b = - \overline b \times \overline a $
3. $\left( {p\overline a } \right) \times \overline b = \overline a \times \left( {p\overline b } \right) = p\left( {\overline a \times \overline b } \right)$
4. $\left| {\overline a \times \overline b } \right| = \left| {\overline a } \right|\left| {\overline b } \right|\sin \theta $
5. $\overline a \cdot \left( {\overline b \times \overline c } \right) = \left( {\overline a \times \overline b } \right) \cdot \overline c $
6. $\overline a \times \left( {\overline b \times \overline c } \right) = \left( {\overline a \cdot \overline c } \right)\overline b - \left( {\overline a \cdot \overline b } \right)\overline c $ .
Now, do the cross product of the two given vectors and take the magnitude of the cross product.
After that, divide the above result by 2 to get the answer.
Complete step-by-step answer:
We are given that, $\overline a $ and $\overline b $ are vectors, satisfying $\left| {\overline a } \right| = \left| {\overline b } \right| = 5$ and $\left( {\overline a ,\overline b } \right) = 45^\circ $ .
Now, it is said that, the vectors $\overline a - 2\overline b $ and $3\overline a + 2\overline b $ form a triangle.
The area of triangle formed by vectors is $\dfrac{1}{2} \times $ | cross product of two vectors |
$\therefore \Delta = \dfrac{1}{2}\left| {\left( {\overline a - 2\overline b } \right) \times \left( {3\overline a + 2\overline b } \right)} \right|$
$ = \dfrac{1}{2} \times \left| {\overline a \times 3\overline a + \overline a \times 2\overline b - 2\overline b \times 3\overline a - 2\overline b \times 2\overline b } \right|$
Applying the property $\overline a \times \overline a = 0$ ,
\[\therefore \Delta = \dfrac{1}{2}\left| {\overline a \times 2\overline b - 2\overline b \times 3\overline a } \right|\]
Also, $\overline a \times \overline b = - \overline b \times \overline a $
\[\therefore \Delta = \dfrac{1}{2}\left| {\overline a \times 2\overline b + 3\overline a \times 2\overline b } \right|\]
Applying $\overline a \times \overline b = ab\sin \theta $
$\therefore \Delta = \dfrac{1}{2}\left| {2ab\sin 45^\circ + 6ab\sin 45^\circ } \right|$
$
= \dfrac{1}{2}\left| {8ab\sin 45^\circ } \right| \\
= \dfrac{1}{2}\left| {8ab \times \dfrac{1}{{\sqrt 2 }}} \right| \\
$
Now, $\left| {\overline a } \right| = \left| {\overline b } \right| = 5$
$\therefore \Delta = \dfrac{1}{2} \times 8 \times 5 \times 5 \times \dfrac{1}{{\sqrt 2 }}$
$
= \dfrac{{100}}{{\sqrt 2 }} \\
= 50\sqrt 2 \\
$
Thus, the area of the triangle constructed with vectors $\overline a - 2\overline b $ and $3\overline a + 2\overline b $ is $50\sqrt 2 $ sq. units.
So, Option (A) is correct.
Note: We have written some properties of cross product, which will be useful to us while solving such types of questions.
1. $\overline a \times \overline a = 0$
2.$\overline a \times \overline b = - \overline b \times \overline a $
3. $\left( {p\overline a } \right) \times \overline b = \overline a \times \left( {p\overline b } \right) = p\left( {\overline a \times \overline b } \right)$
4. $\left| {\overline a \times \overline b } \right| = \left| {\overline a } \right|\left| {\overline b } \right|\sin \theta $
5. $\overline a \cdot \left( {\overline b \times \overline c } \right) = \left( {\overline a \times \overline b } \right) \cdot \overline c $
6. $\overline a \times \left( {\overline b \times \overline c } \right) = \left( {\overline a \cdot \overline c } \right)\overline b - \left( {\overline a \cdot \overline b } \right)\overline c $ .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

