
If \[\operatorname{u}=f({{x}^{3}})\] , \[\operatorname{v}=g({{x}^{2}})\] , \[\operatorname{f}'(x)=cosx\] and \[\operatorname{g}'(x)=sinx\] , then find the value of \[\dfrac{du}{dv}\] .
A. \[\dfrac{3}{2}xcos{{x}^{3}}cosec{{x}^{2}}\]
B. \[\dfrac{2}{3}sin{{x}^{3}}sec{{x}^{2}}\]
C. \[\operatorname{tanx}\]
D. None of these
Answer
607.5k+ views
Hint: Integrate \[\operatorname{f}'(x)\] and \[\operatorname{g}'(x)\] with respect to \[dx\] . After integration, we get \[\operatorname{f}(x)=sinx\] and
\[\operatorname{g}(x)=-cosx\] . Now, we have \[\operatorname{u}=f({{x}^{3}})=sin{{x}^{3}}\] and \[\operatorname{v}=g({{x}^{2}})=-cos{{x}^{2}}\] . Using the chain rule, we can write \[\dfrac{du}{dv}\] as \[\dfrac{du}{dx}.\dfrac{dx}{dv}\] . Now, find \[\dfrac{du}{dx}\] and \[\dfrac{dx}{dv}\] . Put their values in \[\dfrac{du}{dx}.\dfrac{dx}{dv}\] and solve them further.
Complete step-by-step answer:
In the question, it is given that \[\operatorname{u}=f({{x}^{3}})\] , \[\operatorname{v}=g({{x}^{2}})\] , \[\operatorname{f}'(x)=cosx\] and \[\operatorname{g}'(x)=sinx\] .
We have \[\operatorname{f}'(x)=cosx\] . We can write \[\operatorname{f}'(x)\] as \[\dfrac{df}{dx}\] .
Now, we have \[\dfrac{df}{dx}=cosx\]………………(1)
Integrating equation (1), we get
\[\begin{align}
& df=\cos x\,dx \\
& \Rightarrow \int{df}=\int{\cos x\,dx} \\
\end{align}\]
We know that the integration of \[\cos x\] is \[\sin x\] .
\[\Rightarrow \operatorname{f}(x)=sinx+{{c}_{1}}\]………………(2)
Where \[{{\operatorname{c}}_{1}}\] is constant.
We also have \[g'(x)=\operatorname{sinx}\] . We can write \[g'(x)\] as \[\dfrac{dg}{dx}\] .
Now, we have \[\dfrac{dg}{dx}=sinx\]…………..(3)
Integrating equation (3), we get
\[\begin{align}
& dg=\sin x\,dx \\
& \Rightarrow \int{dg}=\int{\sin x\,dx} \\
\end{align}\]
We know that the integration of \[\sin x\] is \[-\cos x\] .
\[\Rightarrow g(x)=-\operatorname{cosx}+{{c}_{2}}\]………………(4)
Where \[{{\operatorname{c}}_{2}}\] is constant.
From equation (2) and equation (4), we have \[f(x)=sinx+{{c}_{1}}\] , \[g(x)=-\operatorname{cosx}+{{c}_{2}}\] .
Now, we have to find \[u\] and \[v\] .
According to question, it is given that \[\operatorname{u}=f({{x}^{3}})\] and \[\operatorname{v}=g({{x}^{2}})\]
We have, \[\operatorname{f}(x)=sinx+{{c}_{1}}\] . We have to find \[\operatorname{f}({{x}^{3}})\] .
Substituting x by \[{{\operatorname{x}}^{3}}\] , we get \[\operatorname{f}({{x}^{3}})=sin{{x}^{3}}+{{c}_{1}}\] ………………(5)
We have, \[\operatorname{g}(x)=-cosx+{{c}_{2}}\] . We have to find \[\operatorname{g}({{x}^{2}})\] .
Substituting x by \[{{\operatorname{x}}^{2}}\] , we get \[\operatorname{g}({{x}^{2}})=-cos{{x}^{2}}+{{c}_{1}}\] …………………..(6)
We have to find the value of \[\dfrac{du}{dv}\] .
Using the chain rule, we can transform \[\dfrac{du}{dv}\] as \[\dfrac{du}{dv}=\dfrac{du}{dx}.\dfrac{dx}{dv}\] ……..(7)
Now, we need \[\dfrac{du}{dx}\] and \[\dfrac{dv}{dx}\] .
\[\operatorname{u}=f({{x}^{3}})=sin{{x}^{3}}+{{c}_{1}}\]
\[\dfrac{du}{dx}=cos{{x}^{3}}.3{{x}^{2}}=3{{x}^{2}}.cos{{x}^{3}}\]………….(8)
\[\operatorname{g}({{x}^{2}})=-cos{{x}^{2}}+{{c}_{1}}\]
\[\dfrac{dv}{dx}=sin{{x}^{2}}.2x=2x.sin{{x}^{2}}\]……………….(9)
Using equation (8) and equation (9), we can transform equation (7)
\[\begin{align}
& \dfrac{du}{dv}=\dfrac{du}{dx}.\dfrac{dx}{dv}=(3{{x}^{2}}.cos{{x}^{3}})\times \dfrac{1}{(2x.sin{{x}^{2}})} \\
& \dfrac{du}{dv}=\dfrac{3{{x}^{2}}.cos{{x}^{3}}}{2x.sin{{x}^{2}}}=\dfrac{3}{2}xcos{{x}^{3}}cosec{{x}^{2}} \\
\end{align}\]
So, the value of \[\dfrac{du}{dv}=\dfrac{3}{2}xcos{{x}^{3}}cosec{{x}^{2}}\] .
Therefore, option (A) is correct.
Note: In this question, one can try to find \[\dfrac{du}{dv}\] without using the chain rule. One can solve this derivative by transforming u in terms of v. This approach will increase the complexity of the solution. So, try to find the derivative using the chain rule. It will be easier to solve.
\[\operatorname{g}(x)=-cosx\] . Now, we have \[\operatorname{u}=f({{x}^{3}})=sin{{x}^{3}}\] and \[\operatorname{v}=g({{x}^{2}})=-cos{{x}^{2}}\] . Using the chain rule, we can write \[\dfrac{du}{dv}\] as \[\dfrac{du}{dx}.\dfrac{dx}{dv}\] . Now, find \[\dfrac{du}{dx}\] and \[\dfrac{dx}{dv}\] . Put their values in \[\dfrac{du}{dx}.\dfrac{dx}{dv}\] and solve them further.
Complete step-by-step answer:
In the question, it is given that \[\operatorname{u}=f({{x}^{3}})\] , \[\operatorname{v}=g({{x}^{2}})\] , \[\operatorname{f}'(x)=cosx\] and \[\operatorname{g}'(x)=sinx\] .
We have \[\operatorname{f}'(x)=cosx\] . We can write \[\operatorname{f}'(x)\] as \[\dfrac{df}{dx}\] .
Now, we have \[\dfrac{df}{dx}=cosx\]………………(1)
Integrating equation (1), we get
\[\begin{align}
& df=\cos x\,dx \\
& \Rightarrow \int{df}=\int{\cos x\,dx} \\
\end{align}\]
We know that the integration of \[\cos x\] is \[\sin x\] .
\[\Rightarrow \operatorname{f}(x)=sinx+{{c}_{1}}\]………………(2)
Where \[{{\operatorname{c}}_{1}}\] is constant.
We also have \[g'(x)=\operatorname{sinx}\] . We can write \[g'(x)\] as \[\dfrac{dg}{dx}\] .
Now, we have \[\dfrac{dg}{dx}=sinx\]…………..(3)
Integrating equation (3), we get
\[\begin{align}
& dg=\sin x\,dx \\
& \Rightarrow \int{dg}=\int{\sin x\,dx} \\
\end{align}\]
We know that the integration of \[\sin x\] is \[-\cos x\] .
\[\Rightarrow g(x)=-\operatorname{cosx}+{{c}_{2}}\]………………(4)
Where \[{{\operatorname{c}}_{2}}\] is constant.
From equation (2) and equation (4), we have \[f(x)=sinx+{{c}_{1}}\] , \[g(x)=-\operatorname{cosx}+{{c}_{2}}\] .
Now, we have to find \[u\] and \[v\] .
According to question, it is given that \[\operatorname{u}=f({{x}^{3}})\] and \[\operatorname{v}=g({{x}^{2}})\]
We have, \[\operatorname{f}(x)=sinx+{{c}_{1}}\] . We have to find \[\operatorname{f}({{x}^{3}})\] .
Substituting x by \[{{\operatorname{x}}^{3}}\] , we get \[\operatorname{f}({{x}^{3}})=sin{{x}^{3}}+{{c}_{1}}\] ………………(5)
We have, \[\operatorname{g}(x)=-cosx+{{c}_{2}}\] . We have to find \[\operatorname{g}({{x}^{2}})\] .
Substituting x by \[{{\operatorname{x}}^{2}}\] , we get \[\operatorname{g}({{x}^{2}})=-cos{{x}^{2}}+{{c}_{1}}\] …………………..(6)
We have to find the value of \[\dfrac{du}{dv}\] .
Using the chain rule, we can transform \[\dfrac{du}{dv}\] as \[\dfrac{du}{dv}=\dfrac{du}{dx}.\dfrac{dx}{dv}\] ……..(7)
Now, we need \[\dfrac{du}{dx}\] and \[\dfrac{dv}{dx}\] .
\[\operatorname{u}=f({{x}^{3}})=sin{{x}^{3}}+{{c}_{1}}\]
\[\dfrac{du}{dx}=cos{{x}^{3}}.3{{x}^{2}}=3{{x}^{2}}.cos{{x}^{3}}\]………….(8)
\[\operatorname{g}({{x}^{2}})=-cos{{x}^{2}}+{{c}_{1}}\]
\[\dfrac{dv}{dx}=sin{{x}^{2}}.2x=2x.sin{{x}^{2}}\]……………….(9)
Using equation (8) and equation (9), we can transform equation (7)
\[\begin{align}
& \dfrac{du}{dv}=\dfrac{du}{dx}.\dfrac{dx}{dv}=(3{{x}^{2}}.cos{{x}^{3}})\times \dfrac{1}{(2x.sin{{x}^{2}})} \\
& \dfrac{du}{dv}=\dfrac{3{{x}^{2}}.cos{{x}^{3}}}{2x.sin{{x}^{2}}}=\dfrac{3}{2}xcos{{x}^{3}}cosec{{x}^{2}} \\
\end{align}\]
So, the value of \[\dfrac{du}{dv}=\dfrac{3}{2}xcos{{x}^{3}}cosec{{x}^{2}}\] .
Therefore, option (A) is correct.
Note: In this question, one can try to find \[\dfrac{du}{dv}\] without using the chain rule. One can solve this derivative by transforming u in terms of v. This approach will increase the complexity of the solution. So, try to find the derivative using the chain rule. It will be easier to solve.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

