If \[\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0\], then $\theta $ lies in which quadrant
A: First
B: Second
C: Third
D: Fourth
Answer
Verified
468.3k+ views
Hint: We know in second quadrant only $\operatorname{Sin} \theta \& \operatorname{Cos} ec\theta $ are positive and rest all $\operatorname{Cos} \theta ,\operatorname{Sec} \theta ,\operatorname{Tan} \theta ,Cot\theta $ are negative So for second quadrant we can write
\[\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta < 0,Cot\theta < 0\] hence we can find the answer
Complete step-by-step answer:
As we know that the angles are classified into four quadrants, that is, $1^{st},2^{nd},3^{rd},4^{th}$. So basically a round circle is of a circle is of ${360^ \circ }$ angle so to make a circle we need an angle of ${360^ \circ }$ so this ${360^ \circ }$ is divided into $4$ parts
${\rm I}$ The first part is called $1stQuadrant$ in which the angle lies between ${0^\circ}to{90^\circ}$. If the angle is between ${0^\circ} to {90^\circ}$ then that angle lies in first quadrant and in first quadrant we know \[\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta ,\operatorname{Sec} \theta ,\operatorname{Cos} \theta ,\operatorname{Tan} \theta ,Cot\theta \] all are positive so we can write in the first quadrant \[\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta > 0,\operatorname{Cos} \theta > 0,\operatorname{Tan} \theta > 0,Cot\theta > 0\]
${\rm I}{\rm I}$ Now if angle lies between ${90^\circ} to {180^\circ}$ then that range is termed as second quadrant for example: If $\theta = {120^\circ}$ then it lies in second quadrant now we know that in second quadrant $\operatorname{Sin} \theta \& \operatorname{Cos} ec\theta $ are positive and rest all $\operatorname{Cos} \theta ,\operatorname{Sec} \theta ,\operatorname{Tan} \theta ,Cot\theta $ are negative so we can say that in second quadrant \[\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta < 0,Cot\theta < 0\].
${\rm I}{\rm I}{\rm I}$ If angle lies between ${180^\circ} to {270^\circ}$ then that range is termed as third quadrant. for example: If $\theta = {200^\circ}$ then it lies in third quadrant now we know that in third quadrant $\operatorname{Tan} \theta \& Cot\theta $ are positive and rest all $\operatorname{Cos} \theta ,\operatorname{Sec} \theta ,\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta $ are negative so we can say that in third quadrant \[\operatorname{Sin} \theta < 0,\operatorname{Cos} ec\theta < 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta > 0,Cot\theta > 0\].
${\rm I}V$ If angle lies between ${270^\circ} to {360^\circ}$ then that range is termed as fourth quadrant. for example: If $\theta = {300^\circ}$ then it lies in fourth quadrant now we know that in fourth quadrant $\operatorname{Sec} \theta \& Cos\theta $ are positive and rest all $Cot\theta ,\operatorname{Tan} \theta ,\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta $ are negative so we can say that in fourth quadrant \[\operatorname{Sin} \theta < 0,\operatorname{Cos} ec\theta < 0,\operatorname{Sec} \theta > 0,\operatorname{Cos} \theta > 0,\operatorname{Tan} \theta < 0,Cot\theta < 0\].
So here we are given that if $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0$ so we can conclude that
$({\rm I})$ In $1^{st}$ Quadrant: $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta > 0$
$({\rm I}{\rm I})$ In $2^{nd}$ Quadrant: $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0$
$({\rm I}{\rm I}{\rm I})$ In $3^{rd}$ Quadrant: $\operatorname{Sin} \theta < 0,\operatorname{Sec} \theta < 0$
$({\rm I}V)$ In $4^{th}$ Quadrant: $\operatorname{Sin} \theta < 0,\operatorname{Sec} \theta > 0$
Therefore $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0$ lies in Second quadrant.
Note: We can solve by using graphical method also for example
Graph of $\operatorname{Sin} \theta $
Graph of $\operatorname{Sec} \theta $
so between $\dfrac{\Pi }{2}to\Pi $ we see $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0$ and it lies in second quadrant.
\[\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta < 0,Cot\theta < 0\] hence we can find the answer
Complete step-by-step answer:
As we know that the angles are classified into four quadrants, that is, $1^{st},2^{nd},3^{rd},4^{th}$. So basically a round circle is of a circle is of ${360^ \circ }$ angle so to make a circle we need an angle of ${360^ \circ }$ so this ${360^ \circ }$ is divided into $4$ parts
${\rm I}$ The first part is called $1stQuadrant$ in which the angle lies between ${0^\circ}to{90^\circ}$. If the angle is between ${0^\circ} to {90^\circ}$ then that angle lies in first quadrant and in first quadrant we know \[\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta ,\operatorname{Sec} \theta ,\operatorname{Cos} \theta ,\operatorname{Tan} \theta ,Cot\theta \] all are positive so we can write in the first quadrant \[\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta > 0,\operatorname{Cos} \theta > 0,\operatorname{Tan} \theta > 0,Cot\theta > 0\]
${\rm I}{\rm I}$ Now if angle lies between ${90^\circ} to {180^\circ}$ then that range is termed as second quadrant for example: If $\theta = {120^\circ}$ then it lies in second quadrant now we know that in second quadrant $\operatorname{Sin} \theta \& \operatorname{Cos} ec\theta $ are positive and rest all $\operatorname{Cos} \theta ,\operatorname{Sec} \theta ,\operatorname{Tan} \theta ,Cot\theta $ are negative so we can say that in second quadrant \[\operatorname{Sin} \theta > 0,\operatorname{Cos} ec\theta > 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta < 0,Cot\theta < 0\].
${\rm I}{\rm I}{\rm I}$ If angle lies between ${180^\circ} to {270^\circ}$ then that range is termed as third quadrant. for example: If $\theta = {200^\circ}$ then it lies in third quadrant now we know that in third quadrant $\operatorname{Tan} \theta \& Cot\theta $ are positive and rest all $\operatorname{Cos} \theta ,\operatorname{Sec} \theta ,\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta $ are negative so we can say that in third quadrant \[\operatorname{Sin} \theta < 0,\operatorname{Cos} ec\theta < 0,\operatorname{Sec} \theta < 0,\operatorname{Cos} \theta < 0,\operatorname{Tan} \theta > 0,Cot\theta > 0\].
${\rm I}V$ If angle lies between ${270^\circ} to {360^\circ}$ then that range is termed as fourth quadrant. for example: If $\theta = {300^\circ}$ then it lies in fourth quadrant now we know that in fourth quadrant $\operatorname{Sec} \theta \& Cos\theta $ are positive and rest all $Cot\theta ,\operatorname{Tan} \theta ,\operatorname{Sin} \theta ,\operatorname{Cos} ec\theta $ are negative so we can say that in fourth quadrant \[\operatorname{Sin} \theta < 0,\operatorname{Cos} ec\theta < 0,\operatorname{Sec} \theta > 0,\operatorname{Cos} \theta > 0,\operatorname{Tan} \theta < 0,Cot\theta < 0\].
So here we are given that if $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0$ so we can conclude that
$({\rm I})$ In $1^{st}$ Quadrant: $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta > 0$
$({\rm I}{\rm I})$ In $2^{nd}$ Quadrant: $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0$
$({\rm I}{\rm I}{\rm I})$ In $3^{rd}$ Quadrant: $\operatorname{Sin} \theta < 0,\operatorname{Sec} \theta < 0$
$({\rm I}V)$ In $4^{th}$ Quadrant: $\operatorname{Sin} \theta < 0,\operatorname{Sec} \theta > 0$
Therefore $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0$ lies in Second quadrant.
Note: We can solve by using graphical method also for example
Graph of $\operatorname{Sin} \theta $
Graph of $\operatorname{Sec} \theta $
so between $\dfrac{\Pi }{2}to\Pi $ we see $\operatorname{Sin} \theta > 0,\operatorname{Sec} \theta < 0$ and it lies in second quadrant.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE