
If $ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Sin} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $ , then what is the value of $ {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) $ ?
A) $ \dfrac{{2\pi }}{3} $
B) $ \dfrac{\pi }{3} $
C) $ \dfrac{\pi }{6} $
D) $ \pi $
Answer
501.3k+ views
Hint: We know that the above equations are given in the form of inverse trigonometric functions or anti-trigonometric functions. Inverse trigonometric functions are the inverse functions of the trigonometric functions. In Inverse trigonometric functions there is an identity called inverse sum identity, we can solve this question by using $ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} $ identity.
Formula: Inverse sum identity- $ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} $ , for all $ x \in \left[ { - 1,1} \right] $
Complete step-by-step answer:
We have,
$ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Sin} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $ … $ \left( i \right) $
We know that, $ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} $ for all $ x \in \left[ { - 1,1} \right] $ [Inverse sum identity]
Now, we will shift $ {\operatorname{Cos} ^{ - 1}}\left( x \right) $ to Right hand side:
$ {\operatorname{Sin} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( x \right) $
If we replace $ x $ by $ y $ in the inverse sum identity. Then, we get
$ {\operatorname{Sin} ^{ - 1}}\left( y \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{\pi }{2} $
Now, we will Shift $ {\operatorname{Cos} ^{ - 1}}\left( y \right) $ to Right hand side:
$ {\operatorname{Sin} ^{ - 1}}\left( y \right) = \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( y \right) $
Now, we will substitute the value of $ {\operatorname{Sin} ^{ - 1}}\left( x \right) $ and $ {\operatorname{Sin} ^{ - 1}}\left( y \right) $ in the equation $ \left( i \right) $
$ \Rightarrow \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( x \right) + \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $
$ \Rightarrow \dfrac{\pi }{2} + \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( x \right) - {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $
Now, we will take the LCM of $ \dfrac{\pi }{2} + \dfrac{\pi }{2} $
$ \Rightarrow \pi - {\operatorname{Cos} ^{ - 1}}\left( x \right) - {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $
Shift $ \dfrac{{2\pi }}{3} $ to L.H.S. and $ - {\operatorname{Cos} ^{ - 1}}\left( x \right) $ , $ - {\operatorname{Cos} ^{ - 1}}\left( y \right) $ to R.H.S.
$ \Rightarrow \pi - \dfrac{{2\pi }}{3} = {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) $
We can also write it as:
\[ \Rightarrow {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) = \pi - \dfrac{{2\pi }}{3}\]
Now, we will take the LCM of \[\pi - \dfrac{{2\pi }}{3}\]
\[ \Rightarrow {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{{3\pi - 2\pi }}{3}\]
\[\therefore {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{\pi }{3}\]
Hence, the correct option is 2.
So, the correct answer is “Option 2”.
Note: There are many formulae/identities in inverse trigonometric functions to solve different types of questions, so choose the identity carefully. For example: The identity $ {\operatorname{Sin} ^{ - 1}}\left( x \right) - {\operatorname{Sin} ^{ - 1}}\left( y \right) = \pi $ looks very much similar to the given equation $ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Sin} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $ but if we observe carefully we can see that in $ {\operatorname{Sin} ^{ - 1}}\left( x \right) - {\operatorname{Sin} ^{ - 1}}\left( y \right) = \pi $ identity, there is subtraction between two inverse trigonometric functions whereas there is addition between the two inverse trigonometric functions which we need to solve. We know that there are different identities to solve different types of inverse trigonometric functions:
$ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2},x \in \left[ { - 1,1} \right] $
$ {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2},x \in R $
$ \cos e{c^{ - 1}}\left( x \right) + {\sec ^{ - 1}}\left( x \right) = \dfrac{\pi }{2},\left| x \right| \geqslant 1 $
We use them according to the given problem.
Formula: Inverse sum identity- $ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} $ , for all $ x \in \left[ { - 1,1} \right] $
Complete step-by-step answer:
We have,
$ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Sin} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $ … $ \left( i \right) $
We know that, $ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} $ for all $ x \in \left[ { - 1,1} \right] $ [Inverse sum identity]
Now, we will shift $ {\operatorname{Cos} ^{ - 1}}\left( x \right) $ to Right hand side:
$ {\operatorname{Sin} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( x \right) $
If we replace $ x $ by $ y $ in the inverse sum identity. Then, we get
$ {\operatorname{Sin} ^{ - 1}}\left( y \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{\pi }{2} $
Now, we will Shift $ {\operatorname{Cos} ^{ - 1}}\left( y \right) $ to Right hand side:
$ {\operatorname{Sin} ^{ - 1}}\left( y \right) = \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( y \right) $
Now, we will substitute the value of $ {\operatorname{Sin} ^{ - 1}}\left( x \right) $ and $ {\operatorname{Sin} ^{ - 1}}\left( y \right) $ in the equation $ \left( i \right) $
$ \Rightarrow \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( x \right) + \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $
$ \Rightarrow \dfrac{\pi }{2} + \dfrac{\pi }{2} - {\operatorname{Cos} ^{ - 1}}\left( x \right) - {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $
Now, we will take the LCM of $ \dfrac{\pi }{2} + \dfrac{\pi }{2} $
$ \Rightarrow \pi - {\operatorname{Cos} ^{ - 1}}\left( x \right) - {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $
Shift $ \dfrac{{2\pi }}{3} $ to L.H.S. and $ - {\operatorname{Cos} ^{ - 1}}\left( x \right) $ , $ - {\operatorname{Cos} ^{ - 1}}\left( y \right) $ to R.H.S.
$ \Rightarrow \pi - \dfrac{{2\pi }}{3} = {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) $
We can also write it as:
\[ \Rightarrow {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) = \pi - \dfrac{{2\pi }}{3}\]
Now, we will take the LCM of \[\pi - \dfrac{{2\pi }}{3}\]
\[ \Rightarrow {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{{3\pi - 2\pi }}{3}\]
\[\therefore {\operatorname{Cos} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( y \right) = \dfrac{\pi }{3}\]
Hence, the correct option is 2.
So, the correct answer is “Option 2”.
Note: There are many formulae/identities in inverse trigonometric functions to solve different types of questions, so choose the identity carefully. For example: The identity $ {\operatorname{Sin} ^{ - 1}}\left( x \right) - {\operatorname{Sin} ^{ - 1}}\left( y \right) = \pi $ looks very much similar to the given equation $ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Sin} ^{ - 1}}\left( y \right) = \dfrac{{2\pi }}{3} $ but if we observe carefully we can see that in $ {\operatorname{Sin} ^{ - 1}}\left( x \right) - {\operatorname{Sin} ^{ - 1}}\left( y \right) = \pi $ identity, there is subtraction between two inverse trigonometric functions whereas there is addition between the two inverse trigonometric functions which we need to solve. We know that there are different identities to solve different types of inverse trigonometric functions:
$ {\operatorname{Sin} ^{ - 1}}\left( x \right) + {\operatorname{Cos} ^{ - 1}}\left( x \right) = \dfrac{\pi }{2},x \in \left[ { - 1,1} \right] $
$ {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2},x \in R $
$ \cos e{c^{ - 1}}\left( x \right) + {\sec ^{ - 1}}\left( x \right) = \dfrac{\pi }{2},\left| x \right| \geqslant 1 $
We use them according to the given problem.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

