
If one zero of the quadratic polynomial $f\left( x \right)=4{{x}^{2}}-8kx-9$ is negative of the other, then find the value of k.
Answer
606.6k+ views
Hint:In question given, one zero of the quadratic polynomial is negative of the other.Let consider zeroes of the given quadratic equation as $\alpha $ and $-\alpha $ and use the following relation among zeroes of any quadratic equation with its coefficients.
For any quadratic $a{{x}^{2}}+bx+c=0$ , we have
Sum of zeroes = $\dfrac{-b}{a}$
Product of zeroes = $\dfrac{c}{a}$
Complete step-by-step answer:
As we know the relation among zeroes and coefficients of any quadratic equation $a{{x}^{2}}+bx+c=0$ is given as
Sum of zeroes = $\dfrac{-b}{a}$ …………………(i)
Product of zeroes = $\dfrac{c}{a}$ ………………..(ii)
Now, coming to the question it is given that one zero of the given quadratic $f\left( x \right)=4{{x}^{2}}-8kx-9$ is negative of the other zero.
So, we have
$f\left( x \right)=4{{x}^{2}}-8kx-9.....................\left( iii \right)$
So, let us suppose the zeroes of the quadratic equation given in equation (iii) are $'\alpha '$ and $'-\alpha '$ .
Now, on comparing the equation (iii) with the general equation of a quadratic i.e. $a{{x}^{2}}+bx+c=0$ , we get
$a=4,b=-8k,c=-9$
So, using equations (i) and (ii), we get
$\begin{align}
& \alpha -\alpha =\dfrac{-\left( -8k \right)}{4}=2k \\
& \Rightarrow 0=2k \\
& \Rightarrow k=0 \\
\end{align}$
So, the value of k is given as 0.
Note: Another approach for the question would be that we can put roots $\alpha $ and $-\alpha $ to the given equation as well.
So, on putting $\alpha $ to $f\left( x \right)$ , we get
$4{{\alpha }^{2}}-8k\alpha -9=0$
Similarly, put $-\alpha $ to $f\left( x \right)$ , we get
$4{{\alpha }^{2}}+8k\alpha -9=0$
On subtraction, we get k = 0.
So, it can be another approach. One may go for calculating the roots of the quadratic with the help of quadratic formula, given as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for quadratic $a{{x}^{2}}+bx+c=0$
And hence, we can add the roots and equate them to 0. So, it can be another approach but a little more complex than given in the solution.
For any quadratic $a{{x}^{2}}+bx+c=0$ , we have
Sum of zeroes = $\dfrac{-b}{a}$
Product of zeroes = $\dfrac{c}{a}$
Complete step-by-step answer:
As we know the relation among zeroes and coefficients of any quadratic equation $a{{x}^{2}}+bx+c=0$ is given as
Sum of zeroes = $\dfrac{-b}{a}$ …………………(i)
Product of zeroes = $\dfrac{c}{a}$ ………………..(ii)
Now, coming to the question it is given that one zero of the given quadratic $f\left( x \right)=4{{x}^{2}}-8kx-9$ is negative of the other zero.
So, we have
$f\left( x \right)=4{{x}^{2}}-8kx-9.....................\left( iii \right)$
So, let us suppose the zeroes of the quadratic equation given in equation (iii) are $'\alpha '$ and $'-\alpha '$ .
Now, on comparing the equation (iii) with the general equation of a quadratic i.e. $a{{x}^{2}}+bx+c=0$ , we get
$a=4,b=-8k,c=-9$
So, using equations (i) and (ii), we get
$\begin{align}
& \alpha -\alpha =\dfrac{-\left( -8k \right)}{4}=2k \\
& \Rightarrow 0=2k \\
& \Rightarrow k=0 \\
\end{align}$
So, the value of k is given as 0.
Note: Another approach for the question would be that we can put roots $\alpha $ and $-\alpha $ to the given equation as well.
So, on putting $\alpha $ to $f\left( x \right)$ , we get
$4{{\alpha }^{2}}-8k\alpha -9=0$
Similarly, put $-\alpha $ to $f\left( x \right)$ , we get
$4{{\alpha }^{2}}+8k\alpha -9=0$
On subtraction, we get k = 0.
So, it can be another approach. One may go for calculating the roots of the quadratic with the help of quadratic formula, given as
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for quadratic $a{{x}^{2}}+bx+c=0$
And hence, we can add the roots and equate them to 0. So, it can be another approach but a little more complex than given in the solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

