
If one of the zeros of the quadratic polynomial $\left( k-1 \right){{x}^{2}}+kx+1$ is $-3$, then the value of $k$ is
A. $\dfrac{4}{3}$
B. $\dfrac{-4}{3}$
C. $\dfrac{2}{3}$
D. $\dfrac{-2}{3}$
Answer
561.9k+ views
Hint: First we will assume another root of the given equation as $\alpha $. We have the relation between $p,q$ which are the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ and the coefficients of the quadratic equation $a{{x}^{2}}+bx+c=0$ as
$p+q=\dfrac{-b}{a}$
$pq=\dfrac{c}{a}$
From the above relation we will make an equation to find the value of $k$.
Complete step-by-step solution
Given that, the quadratic equation is
$\left( k-1 \right){{x}^{2}}+kx+1=0$
Comparing the above equation with $a{{x}^{2}}+bx+c=0$, we get $a=k-1$, $b=k$, $c=1$
Given that the value of one root is $-3$, then $p=-3$
Let the other root of the equation is $\alpha $, then $q=\alpha $
We know that $p+q=\dfrac{-b}{a}$
Substituting the values of $p=-3$, $q=\alpha $,$b=k$, $a=k-1$ in the above equation, we get
$\begin{align}
& -3+\alpha =\dfrac{-k}{k-1} \\
& \Rightarrow \left( -3+\alpha \right)\left( k-1 \right)=-k \\
& \Rightarrow -3k+3+\alpha k-\alpha +k=0 \\
& \Rightarrow k\left( \alpha -2 \right)+3-\alpha =0 \\
& \Rightarrow k\left( \alpha -2 \right)=\alpha -3 \\
& \Rightarrow k=\dfrac{\alpha -3}{\alpha -2}...\left( \text{i} \right) \\
\end{align}$
We know that $pq=\dfrac{c}{a}$
Substituting the values of $p=-3$,$q=\alpha $,$a=k-1$,$c=1$, we get
$\begin{align}
& -3\alpha =\dfrac{1}{k-1} \\
& \Rightarrow \alpha =\dfrac{1}{3\left( 1-k \right)} \\
\end{align}$
Substituting the value of $\alpha $ from the above equation in equation $\left( \text{i} \right)$, we get
$\begin{align}
& k=\dfrac{\alpha -3}{\alpha -2} \\
& \Rightarrow k=\dfrac{\dfrac{1}{3\left( 1-k \right)}-3}{\dfrac{1}{3\left( 1-k \right)}-2} \\
& \Rightarrow k=\dfrac{\dfrac{1-9\left( 1-k \right)}{3\left( 1-k \right)}}{\dfrac{1-6\left( 1-k \right)}{3\left( 1-k \right)}} \\
\end{align}$
Now cancelling the term $3\left( 1-k \right)$ in both numerator and denominator, we get
$k=\dfrac{1-9+9k}{1-6+6k}$
Now multiplying $6k-5$ on both sides, we get
$\begin{align}
& \Rightarrow k\left( 6k-5 \right)=\dfrac{9k-8}{6k-5}\left( 6k-5 \right) \\
& \Rightarrow 6{{k}^{2}}-5k=9k-8 \\
\end{align}$
Now adding the term $8-9k$ to both sides of the above equation, we get
$\begin{align}
& \Rightarrow 6{{k}^{2}}-5k+8-9k=9k-8+8-9k \\
& \Rightarrow 6{{k}^{2}}-14k+8=0 \\
\end{align}$
Now dividing the above equation with $2$, we get
$\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 6{{k}^{2}}-14k+8 \right)=0\times \dfrac{1}{2} \\
& \Rightarrow 3{{k}^{2}}-7k+4=0 \\
\end{align}$
Solving the above equation to get the value of $k$, we get
$\Rightarrow 3{{k}^{2}}-3k-4k+4=0$
Taking $3k$common from $3{{k}^{2}}-3k$ and $-4$ from $-4k+4$ , we get
$\begin{align}
& \Rightarrow 3{{k}^{2}}-3k-4k+4=0 \\
& \Rightarrow 3k\left( k-1 \right)-4\left( k-1 \right)=0 \\
\end{align}$
Now taking $\left( k-1 \right)$ common from the above equation, we get
$\Rightarrow \left( k-1 \right)\left( 3k-4 \right)=0$
Now equating first term to zero to get the value of $k$, then we will have
$\begin{align}
& \Rightarrow k-1=0 \\
& \therefore k=1 \\
\end{align}$
Now equating the second term to zero to get another value of $k$, then we will have
$\begin{align}
& \Rightarrow 3k-4=0 \\
& \Rightarrow 3k=4 \\
& \therefore k=\dfrac{4}{3} \\
\end{align}$
$\therefore $ the values of $k$ are $k=1\text{ or }\dfrac{4}{3}$
Hence the answer is $k=1\text{ or }\dfrac{4}{3}$.
Note: We can also solve the above equation by simple method. i.e. substituting the zero of the equation $-3$ in the equation $\left( k-1 \right){{x}^{2}}+kx+1$, we get
$\begin{align}
& \left( k-1 \right){{\left( -3 \right)}^{2}}+k\left( -3 \right)+1=0 \\
& \Rightarrow 9\left( k-1 \right)-3k+1=0 \\
& \Rightarrow 9k-9-3k+1=0 \\
& \Rightarrow 6k=8 \\
& \therefore k=\dfrac{4}{3} \\
\end{align}$
$\therefore $ From both the methods we got the same answer.
$p+q=\dfrac{-b}{a}$
$pq=\dfrac{c}{a}$
From the above relation we will make an equation to find the value of $k$.
Complete step-by-step solution
Given that, the quadratic equation is
$\left( k-1 \right){{x}^{2}}+kx+1=0$
Comparing the above equation with $a{{x}^{2}}+bx+c=0$, we get $a=k-1$, $b=k$, $c=1$
Given that the value of one root is $-3$, then $p=-3$
Let the other root of the equation is $\alpha $, then $q=\alpha $
We know that $p+q=\dfrac{-b}{a}$
Substituting the values of $p=-3$, $q=\alpha $,$b=k$, $a=k-1$ in the above equation, we get
$\begin{align}
& -3+\alpha =\dfrac{-k}{k-1} \\
& \Rightarrow \left( -3+\alpha \right)\left( k-1 \right)=-k \\
& \Rightarrow -3k+3+\alpha k-\alpha +k=0 \\
& \Rightarrow k\left( \alpha -2 \right)+3-\alpha =0 \\
& \Rightarrow k\left( \alpha -2 \right)=\alpha -3 \\
& \Rightarrow k=\dfrac{\alpha -3}{\alpha -2}...\left( \text{i} \right) \\
\end{align}$
We know that $pq=\dfrac{c}{a}$
Substituting the values of $p=-3$,$q=\alpha $,$a=k-1$,$c=1$, we get
$\begin{align}
& -3\alpha =\dfrac{1}{k-1} \\
& \Rightarrow \alpha =\dfrac{1}{3\left( 1-k \right)} \\
\end{align}$
Substituting the value of $\alpha $ from the above equation in equation $\left( \text{i} \right)$, we get
$\begin{align}
& k=\dfrac{\alpha -3}{\alpha -2} \\
& \Rightarrow k=\dfrac{\dfrac{1}{3\left( 1-k \right)}-3}{\dfrac{1}{3\left( 1-k \right)}-2} \\
& \Rightarrow k=\dfrac{\dfrac{1-9\left( 1-k \right)}{3\left( 1-k \right)}}{\dfrac{1-6\left( 1-k \right)}{3\left( 1-k \right)}} \\
\end{align}$
Now cancelling the term $3\left( 1-k \right)$ in both numerator and denominator, we get
$k=\dfrac{1-9+9k}{1-6+6k}$
Now multiplying $6k-5$ on both sides, we get
$\begin{align}
& \Rightarrow k\left( 6k-5 \right)=\dfrac{9k-8}{6k-5}\left( 6k-5 \right) \\
& \Rightarrow 6{{k}^{2}}-5k=9k-8 \\
\end{align}$
Now adding the term $8-9k$ to both sides of the above equation, we get
$\begin{align}
& \Rightarrow 6{{k}^{2}}-5k+8-9k=9k-8+8-9k \\
& \Rightarrow 6{{k}^{2}}-14k+8=0 \\
\end{align}$
Now dividing the above equation with $2$, we get
$\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 6{{k}^{2}}-14k+8 \right)=0\times \dfrac{1}{2} \\
& \Rightarrow 3{{k}^{2}}-7k+4=0 \\
\end{align}$
Solving the above equation to get the value of $k$, we get
$\Rightarrow 3{{k}^{2}}-3k-4k+4=0$
Taking $3k$common from $3{{k}^{2}}-3k$ and $-4$ from $-4k+4$ , we get
$\begin{align}
& \Rightarrow 3{{k}^{2}}-3k-4k+4=0 \\
& \Rightarrow 3k\left( k-1 \right)-4\left( k-1 \right)=0 \\
\end{align}$
Now taking $\left( k-1 \right)$ common from the above equation, we get
$\Rightarrow \left( k-1 \right)\left( 3k-4 \right)=0$
Now equating first term to zero to get the value of $k$, then we will have
$\begin{align}
& \Rightarrow k-1=0 \\
& \therefore k=1 \\
\end{align}$
Now equating the second term to zero to get another value of $k$, then we will have
$\begin{align}
& \Rightarrow 3k-4=0 \\
& \Rightarrow 3k=4 \\
& \therefore k=\dfrac{4}{3} \\
\end{align}$
$\therefore $ the values of $k$ are $k=1\text{ or }\dfrac{4}{3}$
Hence the answer is $k=1\text{ or }\dfrac{4}{3}$.
Note: We can also solve the above equation by simple method. i.e. substituting the zero of the equation $-3$ in the equation $\left( k-1 \right){{x}^{2}}+kx+1$, we get
$\begin{align}
& \left( k-1 \right){{\left( -3 \right)}^{2}}+k\left( -3 \right)+1=0 \\
& \Rightarrow 9\left( k-1 \right)-3k+1=0 \\
& \Rightarrow 9k-9-3k+1=0 \\
& \Rightarrow 6k=8 \\
& \therefore k=\dfrac{4}{3} \\
\end{align}$
$\therefore $ From both the methods we got the same answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

