
If $\omega $ is an imaginary cube root of unity. Then the equation whose roots are $2\omega + 3{\omega ^2}$ and $2{\omega ^2} + 3\omega $ is
Answer
568.2k+ views
Hint: Using the formula, the sum of roots $ = - \dfrac{{Middle\,term}}{{First\,term}}$ $ = - \dfrac{b}{a}$ , find b in terms of a.
Now, after that, use, the product of roots $ = \dfrac{{Last\,term}}{{First\,term}}$ $ = \dfrac{c}{a}$ , find c in the terms of a.
Now, using the two relations b and c, form an equation using $a{x^2} + bx + c = 0$ .
Complete step-by-step answer:
The given roots of the equation, which is to be formed, are $2\omega + 3{\omega ^2}$ and $2{\omega ^2} + 3\omega $.
Now, in a linear quadratic equation, the sum of roots $ = - \dfrac{{Middle\,term}}{{First\,term}}$ $ = - \dfrac{b}{a}$ .
$\therefore - \dfrac{b}{a} = \left( {2\omega + 3{\omega ^2}} \right) + \left( {2{\omega ^2} + 3\omega } \right)$
$
\therefore - \dfrac{b}{a} = 3{\omega ^2} + 3\omega + 2{\omega ^2} + 2\omega \\
\therefore - \dfrac{b}{a} = 3\left( {{\omega ^2} + \omega } \right) + 2\left( {{\omega ^2} + \omega } \right) \\
$
But, ${\omega ^2} + \omega = - 1$
$
\therefore - \dfrac{b}{a} = 3\left( { - 1} \right) + 2\left( { - 1} \right) \\
\therefore - \dfrac{b}{a} = - 1\left( {3 + 2} \right) \\
\therefore \dfrac{b}{a} = 5 \\
$
$\therefore b = 5a$ … (1)
Similarly, in a linear quadratic equation, the product of roots $ = \dfrac{{Last\,term}}{{First\,term}}$ $ = \dfrac{c}{a}$ .
$
\therefore \dfrac{c}{a} = \left( {2\omega + 3{\omega ^2}} \right)\left( {3\omega + 2{\omega ^2}} \right) \\
\therefore \dfrac{c}{a} = \omega \left( {2 + 3\omega } \right) \times \omega \left( {3 + 2\omega } \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {2 + 3\omega } \right)\left( {3 + 2\omega } \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 4\omega + 9\omega + 6} \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 13\omega + 6} \right) \\
\therefore \dfrac{c}{a} = 6{\omega ^4} + 13{\omega ^3} + 6{\omega ^2} \\
\therefore \dfrac{c}{a} = 6{\omega ^4} + 6{\omega ^2} + 13{\omega ^3} \\
\therefore \dfrac{c}{a} = 6{\omega ^2}\left( {{\omega ^2} + 1} \right) + 13{\omega ^3} \\
$
But, ${\omega ^2} + 1 = - \omega $
$
\therefore \dfrac{c}{a} = 6{\omega ^2}\left( { - \omega } \right) + 13{\omega ^3} \\
\therefore \dfrac{c}{a} = 13{\omega ^3} - 6{\omega ^3} \\
$
Also, ${\omega ^3} = 1$
$
\therefore \dfrac{c}{a} = 13 - 6 \\
\therefore \dfrac{c}{a} = 7 \\
$
$\therefore c = 7a$ … (2)
Now, the quadratic equation can be formed as $a{x^2} + bx + c = 0$ .
Substituting, $b = 5a$ and $c = 7a$ in the above equation.
$
\therefore a{x^2} + 5ax + 7a = 0 \\
\therefore a\left( {{x^2} + 5x + 7} \right) = 0 \\
\therefore {x^2} + 5x + 7 = 0 \\
$
Thus, the quadratic equation is ${x^2} + 5x + 7 = 0$ .
Note: There are 3 cube roots of unity, which are 1, $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ and $\dfrac{{ - 1 - \sqrt 3 i}}{2}$ .
We also write $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ as $\omega $ and $\dfrac{{ - 1 - \sqrt 3 i}}{2}$ as ${\omega ^2}$ .
The properties of cube roots of unity are as follows:
1. $1 + \omega + {\omega ^2} = 0$
2. ${\omega ^3} = 1$
3. ${\omega ^{3n}} = 1,{\omega ^{3n + 1}} = \omega ,{\omega ^{3n + 2}} = {\omega ^2}$
4. $\overline \omega = {\omega ^2},{\left( {\overline \omega } \right)^2} = \omega $ .
Now, after that, use, the product of roots $ = \dfrac{{Last\,term}}{{First\,term}}$ $ = \dfrac{c}{a}$ , find c in the terms of a.
Now, using the two relations b and c, form an equation using $a{x^2} + bx + c = 0$ .
Complete step-by-step answer:
The given roots of the equation, which is to be formed, are $2\omega + 3{\omega ^2}$ and $2{\omega ^2} + 3\omega $.
Now, in a linear quadratic equation, the sum of roots $ = - \dfrac{{Middle\,term}}{{First\,term}}$ $ = - \dfrac{b}{a}$ .
$\therefore - \dfrac{b}{a} = \left( {2\omega + 3{\omega ^2}} \right) + \left( {2{\omega ^2} + 3\omega } \right)$
$
\therefore - \dfrac{b}{a} = 3{\omega ^2} + 3\omega + 2{\omega ^2} + 2\omega \\
\therefore - \dfrac{b}{a} = 3\left( {{\omega ^2} + \omega } \right) + 2\left( {{\omega ^2} + \omega } \right) \\
$
But, ${\omega ^2} + \omega = - 1$
$
\therefore - \dfrac{b}{a} = 3\left( { - 1} \right) + 2\left( { - 1} \right) \\
\therefore - \dfrac{b}{a} = - 1\left( {3 + 2} \right) \\
\therefore \dfrac{b}{a} = 5 \\
$
$\therefore b = 5a$ … (1)
Similarly, in a linear quadratic equation, the product of roots $ = \dfrac{{Last\,term}}{{First\,term}}$ $ = \dfrac{c}{a}$ .
$
\therefore \dfrac{c}{a} = \left( {2\omega + 3{\omega ^2}} \right)\left( {3\omega + 2{\omega ^2}} \right) \\
\therefore \dfrac{c}{a} = \omega \left( {2 + 3\omega } \right) \times \omega \left( {3 + 2\omega } \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {2 + 3\omega } \right)\left( {3 + 2\omega } \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 4\omega + 9\omega + 6} \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 13\omega + 6} \right) \\
\therefore \dfrac{c}{a} = 6{\omega ^4} + 13{\omega ^3} + 6{\omega ^2} \\
\therefore \dfrac{c}{a} = 6{\omega ^4} + 6{\omega ^2} + 13{\omega ^3} \\
\therefore \dfrac{c}{a} = 6{\omega ^2}\left( {{\omega ^2} + 1} \right) + 13{\omega ^3} \\
$
But, ${\omega ^2} + 1 = - \omega $
$
\therefore \dfrac{c}{a} = 6{\omega ^2}\left( { - \omega } \right) + 13{\omega ^3} \\
\therefore \dfrac{c}{a} = 13{\omega ^3} - 6{\omega ^3} \\
$
Also, ${\omega ^3} = 1$
$
\therefore \dfrac{c}{a} = 13 - 6 \\
\therefore \dfrac{c}{a} = 7 \\
$
$\therefore c = 7a$ … (2)
Now, the quadratic equation can be formed as $a{x^2} + bx + c = 0$ .
Substituting, $b = 5a$ and $c = 7a$ in the above equation.
$
\therefore a{x^2} + 5ax + 7a = 0 \\
\therefore a\left( {{x^2} + 5x + 7} \right) = 0 \\
\therefore {x^2} + 5x + 7 = 0 \\
$
Thus, the quadratic equation is ${x^2} + 5x + 7 = 0$ .
Note: There are 3 cube roots of unity, which are 1, $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ and $\dfrac{{ - 1 - \sqrt 3 i}}{2}$ .
We also write $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ as $\omega $ and $\dfrac{{ - 1 - \sqrt 3 i}}{2}$ as ${\omega ^2}$ .
The properties of cube roots of unity are as follows:
1. $1 + \omega + {\omega ^2} = 0$
2. ${\omega ^3} = 1$
3. ${\omega ^{3n}} = 1,{\omega ^{3n + 1}} = \omega ,{\omega ^{3n + 2}} = {\omega ^2}$
4. $\overline \omega = {\omega ^2},{\left( {\overline \omega } \right)^2} = \omega $ .
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

