
If $\omega $ is an imaginary cube root of unity. Then the equation whose roots are $2\omega + 3{\omega ^2}$ and $2{\omega ^2} + 3\omega $ is
Answer
585.3k+ views
Hint: Using the formula, the sum of roots $ = - \dfrac{{Middle\,term}}{{First\,term}}$ $ = - \dfrac{b}{a}$ , find b in terms of a.
Now, after that, use, the product of roots $ = \dfrac{{Last\,term}}{{First\,term}}$ $ = \dfrac{c}{a}$ , find c in the terms of a.
Now, using the two relations b and c, form an equation using $a{x^2} + bx + c = 0$ .
Complete step-by-step answer:
The given roots of the equation, which is to be formed, are $2\omega + 3{\omega ^2}$ and $2{\omega ^2} + 3\omega $.
Now, in a linear quadratic equation, the sum of roots $ = - \dfrac{{Middle\,term}}{{First\,term}}$ $ = - \dfrac{b}{a}$ .
$\therefore - \dfrac{b}{a} = \left( {2\omega + 3{\omega ^2}} \right) + \left( {2{\omega ^2} + 3\omega } \right)$
$
\therefore - \dfrac{b}{a} = 3{\omega ^2} + 3\omega + 2{\omega ^2} + 2\omega \\
\therefore - \dfrac{b}{a} = 3\left( {{\omega ^2} + \omega } \right) + 2\left( {{\omega ^2} + \omega } \right) \\
$
But, ${\omega ^2} + \omega = - 1$
$
\therefore - \dfrac{b}{a} = 3\left( { - 1} \right) + 2\left( { - 1} \right) \\
\therefore - \dfrac{b}{a} = - 1\left( {3 + 2} \right) \\
\therefore \dfrac{b}{a} = 5 \\
$
$\therefore b = 5a$ … (1)
Similarly, in a linear quadratic equation, the product of roots $ = \dfrac{{Last\,term}}{{First\,term}}$ $ = \dfrac{c}{a}$ .
$
\therefore \dfrac{c}{a} = \left( {2\omega + 3{\omega ^2}} \right)\left( {3\omega + 2{\omega ^2}} \right) \\
\therefore \dfrac{c}{a} = \omega \left( {2 + 3\omega } \right) \times \omega \left( {3 + 2\omega } \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {2 + 3\omega } \right)\left( {3 + 2\omega } \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 4\omega + 9\omega + 6} \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 13\omega + 6} \right) \\
\therefore \dfrac{c}{a} = 6{\omega ^4} + 13{\omega ^3} + 6{\omega ^2} \\
\therefore \dfrac{c}{a} = 6{\omega ^4} + 6{\omega ^2} + 13{\omega ^3} \\
\therefore \dfrac{c}{a} = 6{\omega ^2}\left( {{\omega ^2} + 1} \right) + 13{\omega ^3} \\
$
But, ${\omega ^2} + 1 = - \omega $
$
\therefore \dfrac{c}{a} = 6{\omega ^2}\left( { - \omega } \right) + 13{\omega ^3} \\
\therefore \dfrac{c}{a} = 13{\omega ^3} - 6{\omega ^3} \\
$
Also, ${\omega ^3} = 1$
$
\therefore \dfrac{c}{a} = 13 - 6 \\
\therefore \dfrac{c}{a} = 7 \\
$
$\therefore c = 7a$ … (2)
Now, the quadratic equation can be formed as $a{x^2} + bx + c = 0$ .
Substituting, $b = 5a$ and $c = 7a$ in the above equation.
$
\therefore a{x^2} + 5ax + 7a = 0 \\
\therefore a\left( {{x^2} + 5x + 7} \right) = 0 \\
\therefore {x^2} + 5x + 7 = 0 \\
$
Thus, the quadratic equation is ${x^2} + 5x + 7 = 0$ .
Note: There are 3 cube roots of unity, which are 1, $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ and $\dfrac{{ - 1 - \sqrt 3 i}}{2}$ .
We also write $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ as $\omega $ and $\dfrac{{ - 1 - \sqrt 3 i}}{2}$ as ${\omega ^2}$ .
The properties of cube roots of unity are as follows:
1. $1 + \omega + {\omega ^2} = 0$
2. ${\omega ^3} = 1$
3. ${\omega ^{3n}} = 1,{\omega ^{3n + 1}} = \omega ,{\omega ^{3n + 2}} = {\omega ^2}$
4. $\overline \omega = {\omega ^2},{\left( {\overline \omega } \right)^2} = \omega $ .
Now, after that, use, the product of roots $ = \dfrac{{Last\,term}}{{First\,term}}$ $ = \dfrac{c}{a}$ , find c in the terms of a.
Now, using the two relations b and c, form an equation using $a{x^2} + bx + c = 0$ .
Complete step-by-step answer:
The given roots of the equation, which is to be formed, are $2\omega + 3{\omega ^2}$ and $2{\omega ^2} + 3\omega $.
Now, in a linear quadratic equation, the sum of roots $ = - \dfrac{{Middle\,term}}{{First\,term}}$ $ = - \dfrac{b}{a}$ .
$\therefore - \dfrac{b}{a} = \left( {2\omega + 3{\omega ^2}} \right) + \left( {2{\omega ^2} + 3\omega } \right)$
$
\therefore - \dfrac{b}{a} = 3{\omega ^2} + 3\omega + 2{\omega ^2} + 2\omega \\
\therefore - \dfrac{b}{a} = 3\left( {{\omega ^2} + \omega } \right) + 2\left( {{\omega ^2} + \omega } \right) \\
$
But, ${\omega ^2} + \omega = - 1$
$
\therefore - \dfrac{b}{a} = 3\left( { - 1} \right) + 2\left( { - 1} \right) \\
\therefore - \dfrac{b}{a} = - 1\left( {3 + 2} \right) \\
\therefore \dfrac{b}{a} = 5 \\
$
$\therefore b = 5a$ … (1)
Similarly, in a linear quadratic equation, the product of roots $ = \dfrac{{Last\,term}}{{First\,term}}$ $ = \dfrac{c}{a}$ .
$
\therefore \dfrac{c}{a} = \left( {2\omega + 3{\omega ^2}} \right)\left( {3\omega + 2{\omega ^2}} \right) \\
\therefore \dfrac{c}{a} = \omega \left( {2 + 3\omega } \right) \times \omega \left( {3 + 2\omega } \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {2 + 3\omega } \right)\left( {3 + 2\omega } \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 4\omega + 9\omega + 6} \right) \\
\therefore \dfrac{c}{a} = {\omega ^2}\left( {6{\omega ^2} + 13\omega + 6} \right) \\
\therefore \dfrac{c}{a} = 6{\omega ^4} + 13{\omega ^3} + 6{\omega ^2} \\
\therefore \dfrac{c}{a} = 6{\omega ^4} + 6{\omega ^2} + 13{\omega ^3} \\
\therefore \dfrac{c}{a} = 6{\omega ^2}\left( {{\omega ^2} + 1} \right) + 13{\omega ^3} \\
$
But, ${\omega ^2} + 1 = - \omega $
$
\therefore \dfrac{c}{a} = 6{\omega ^2}\left( { - \omega } \right) + 13{\omega ^3} \\
\therefore \dfrac{c}{a} = 13{\omega ^3} - 6{\omega ^3} \\
$
Also, ${\omega ^3} = 1$
$
\therefore \dfrac{c}{a} = 13 - 6 \\
\therefore \dfrac{c}{a} = 7 \\
$
$\therefore c = 7a$ … (2)
Now, the quadratic equation can be formed as $a{x^2} + bx + c = 0$ .
Substituting, $b = 5a$ and $c = 7a$ in the above equation.
$
\therefore a{x^2} + 5ax + 7a = 0 \\
\therefore a\left( {{x^2} + 5x + 7} \right) = 0 \\
\therefore {x^2} + 5x + 7 = 0 \\
$
Thus, the quadratic equation is ${x^2} + 5x + 7 = 0$ .
Note: There are 3 cube roots of unity, which are 1, $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ and $\dfrac{{ - 1 - \sqrt 3 i}}{2}$ .
We also write $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ as $\omega $ and $\dfrac{{ - 1 - \sqrt 3 i}}{2}$ as ${\omega ^2}$ .
The properties of cube roots of unity are as follows:
1. $1 + \omega + {\omega ^2} = 0$
2. ${\omega ^3} = 1$
3. ${\omega ^{3n}} = 1,{\omega ^{3n + 1}} = \omega ,{\omega ^{3n + 2}} = {\omega ^2}$
4. $\overline \omega = {\omega ^2},{\left( {\overline \omega } \right)^2} = \omega $ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

