
If \[\omega \] is an imaginary cube root of unity then the value of \[\cos \left[ \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)} \right]\] is: -
(a) -1
(b) \[\dfrac{-1}{2}\]
(c) \[\dfrac{1}{2}\]
(d) 1
(e) 0
Answer
567.3k+ views
Hint: First of all use the conversion: - \[\overline{\omega }={{\omega }^{2}}\]. Now, multiply the terms \[\left( r-\omega \right)\left( r-\overline{\omega } \right)\] and use the formulas: - \[1+\omega +{{\omega }^{2}}=0\] and \[{{\omega }^{3}}=1\] to simplify the product. Take the summation of these obtained products and use the formulas: -\[\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{r=1}^{n}{r}=\dfrac{n\left( n+1 \right)}{2}\] and \[\sum\limits_{r=1}^{n}{k}=nk\], where k = constant, to get the required sum. Multiply this sum with \[\dfrac{\pi }{225}\] and take cosine function to get the answer.
Complete step by step answer:
Here, we have been provided with an imaginary cube root of unity \[\omega \] and we have been asked to find the value of the expression: - \[\cos \left[ \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)} \right]\].
Now, we know that \[\omega =\dfrac{-1+\sqrt{3}i}{2}\] and its conjugate (\[\overline{\omega }\]) is given as: -
\[\Rightarrow \overline{\omega }=\dfrac{-1-\sqrt{3}i}{2}={{\omega }^{2}}\]
\[\Rightarrow \overline{\omega }={{\omega }^{2}}\] - (1)
Now, let us find the value of the expression: - \[\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}\]. So, using equation (1), we get,
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-{{\omega }^{2}} \right)}\]
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( {{r}^{2}}-r\omega -r{{\omega }^{2}}+{{\omega }^{3}} \right)} \\
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( {{r}^{2}}-r\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right)} \\
\end{align}\]
Now, applying the formulas: - \[1+\omega +{{\omega }^{2}}=0\] and \[{{\omega }^{3}}=1\], we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( {{r}^{2}}-r\left( -1 \right)+1 \right)} \\
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( {{r}^{2}}+r+1 \right)} \\
\end{align}\]
Breaking the terms with summation sign, we get,
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{{{r}^{2}}}+\sum\limits_{r=1}^{10}{r}+\sum\limits_{r=1}^{10}{1}\]
Here, we can clearly, see that the first term in R.H.S., i.e. \[\sum\limits_{r=1}^{10}{{{r}^{2}}}\] is the summation of squares of first 10 natural numbers whose sum is given as \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\], where n = 10. The second term is the summation of first 10 natural numbers, i.e. \[\sum\limits_{r=1}^{10}{r}\], whose sum is given as \[\dfrac{n\left( n+1 \right)}{2}\], where n = 10. Now, the third term is the summation of a constant k = 1, i.e. \[\sum\limits_{r=1}^{10}{1}\], whose sum is given as n, where n = 10. So, simplifying the summation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\dfrac{10\times \left( 10+1 \right)\times \left( 20+1 \right)}{6}+\dfrac{10\times \left( 10+1 \right)}{2}+10 \\
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=450 \\
\end{align}\]
Multiplying \[\dfrac{\pi }{225}\] both sides, we get,
\[\begin{align}
& \Rightarrow \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\dfrac{\pi }{225}\times 450 \\
& \Rightarrow \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=2\pi \\
\end{align}\]
Now, taking cosine function both sides, we get,
\[\Rightarrow \cos \left[ \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)} \right]=\cos 2\pi \]
\[\Rightarrow \cos \left[ \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)} \right]=1\]
Hence, option (d) is our answer.
Note:
One must know the meaning of conjugate of a complex number to solve the question because without using the equality \[\overline{\omega }={{\omega }^{2}}\] we cannot use the formulas: - \[1+\omega +{{\omega }^{2}}=0\] and \[{{\omega }^{3}}=1\] to simplify the summation. You must not try to substitute the value of \[\omega \] and \[{{\omega }^{2}}\] and then evaluate the summation as it will make our calculation difficult.
Complete step by step answer:
Here, we have been provided with an imaginary cube root of unity \[\omega \] and we have been asked to find the value of the expression: - \[\cos \left[ \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)} \right]\].
Now, we know that \[\omega =\dfrac{-1+\sqrt{3}i}{2}\] and its conjugate (\[\overline{\omega }\]) is given as: -
\[\Rightarrow \overline{\omega }=\dfrac{-1-\sqrt{3}i}{2}={{\omega }^{2}}\]
\[\Rightarrow \overline{\omega }={{\omega }^{2}}\] - (1)
Now, let us find the value of the expression: - \[\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}\]. So, using equation (1), we get,
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-{{\omega }^{2}} \right)}\]
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( {{r}^{2}}-r\omega -r{{\omega }^{2}}+{{\omega }^{3}} \right)} \\
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( {{r}^{2}}-r\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right)} \\
\end{align}\]
Now, applying the formulas: - \[1+\omega +{{\omega }^{2}}=0\] and \[{{\omega }^{3}}=1\], we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( {{r}^{2}}-r\left( -1 \right)+1 \right)} \\
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{\left( {{r}^{2}}+r+1 \right)} \\
\end{align}\]
Breaking the terms with summation sign, we get,
\[\Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\sum\limits_{r=1}^{10}{{{r}^{2}}}+\sum\limits_{r=1}^{10}{r}+\sum\limits_{r=1}^{10}{1}\]
Here, we can clearly, see that the first term in R.H.S., i.e. \[\sum\limits_{r=1}^{10}{{{r}^{2}}}\] is the summation of squares of first 10 natural numbers whose sum is given as \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\], where n = 10. The second term is the summation of first 10 natural numbers, i.e. \[\sum\limits_{r=1}^{10}{r}\], whose sum is given as \[\dfrac{n\left( n+1 \right)}{2}\], where n = 10. Now, the third term is the summation of a constant k = 1, i.e. \[\sum\limits_{r=1}^{10}{1}\], whose sum is given as n, where n = 10. So, simplifying the summation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\dfrac{10\times \left( 10+1 \right)\times \left( 20+1 \right)}{6}+\dfrac{10\times \left( 10+1 \right)}{2}+10 \\
& \Rightarrow \sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=450 \\
\end{align}\]
Multiplying \[\dfrac{\pi }{225}\] both sides, we get,
\[\begin{align}
& \Rightarrow \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=\dfrac{\pi }{225}\times 450 \\
& \Rightarrow \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)}=2\pi \\
\end{align}\]
Now, taking cosine function both sides, we get,
\[\Rightarrow \cos \left[ \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)} \right]=\cos 2\pi \]
\[\Rightarrow \cos \left[ \dfrac{\pi }{225}\sum\limits_{r=1}^{10}{\left( r-\omega \right)\left( r-\overline{\omega } \right)} \right]=1\]
Hence, option (d) is our answer.
Note:
One must know the meaning of conjugate of a complex number to solve the question because without using the equality \[\overline{\omega }={{\omega }^{2}}\] we cannot use the formulas: - \[1+\omega +{{\omega }^{2}}=0\] and \[{{\omega }^{3}}=1\] to simplify the summation. You must not try to substitute the value of \[\omega \] and \[{{\omega }^{2}}\] and then evaluate the summation as it will make our calculation difficult.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

