
If \[\omega \] is a complex \[n{\rm{th}}\] root of unity, then \[\sum\limits_{r = 1}^n {\left( {ar + b} \right){\omega ^{r - 1}}} \] is equal to
(a) \[\dfrac{{n\left( {n + 1} \right)a}}{2}\]
(b) \[\dfrac{{nb}}{{1 - n}}\]
(c) \[\dfrac{{na}}{{\omega - 1}}\]
(d) None of these
Answer
577.5k+ views
Hint:
Here, we will expand this sum, and factor out \[a\] and \[b\] from the terms. Then, we will simplify the sum further by using the formula for the sum of terms of a geometric progression. Finally, we will use the given information to simplify the expression and obtain the required value of the sum.
Formula Used: We will use the formula for the sum of \[n\] terms of a G.P. is given by the formula \[\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], where \[a\] is the first term, \[r\] is the common ratio, and \[n\] is the number of terms of the G.P.
Complete step by step solution:
Let the sum \[\sum\limits_{r = 1}^n {\left( {ar + b} \right){\omega ^{r - 1}}} \] be \[S\].
Expanding the sum, we get
\[S = \left( {a \times 1 + b} \right){\omega ^{1 - 1}} + \left( {a \times 2 + b} \right){\omega ^{2 - 1}} + \left( {a \times 3 + b} \right){\omega ^{3 - 1}} + \ldots \ldots \ldots + \left( {a \times n + b} \right){\omega ^{n - 1}}\]
Simplifying the expansion, we get
\[\begin{array}{l} \Rightarrow S = \left( {a + b} \right){\omega ^0} + \left( {2a + b} \right){\omega ^1} + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\\ \Rightarrow S = \left( {a + b} \right)1 + \left( {2a + b} \right)\omega + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\\ \Rightarrow S = \left( {a + b} \right) + \left( {2a + b} \right)\omega + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\end{array}\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow S = \left( {a + b} \right) + \left( {2a\omega + b\omega } \right) + \left( {3a{\omega ^2} + b{\omega ^2}} \right) + \ldots \ldots \ldots + \left( {an{\omega ^{n - 1}} + b{\omega ^{n - 1}}} \right)\]
Rewriting the equation by rearranging the terms, we get
\[ \Rightarrow S = \left( {a + 2a\omega + 3a{\omega ^2} + \ldots \ldots \ldots + an{\omega ^{n - 1}}} \right) + \left( {b + b\omega + b{\omega ^2} \ldots \ldots \ldots + b{\omega ^{n - 1}}} \right)\]
Factoring out \[a\] and \[b\] from the expansion, we can simplify the expansion as
\[ \Rightarrow S = a\left( {1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}} \right) + b\left( {1 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}}} \right)\]
Let \[1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}\] be \[{S_1}\] and \[1 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}}\] be \[{S_2}\].
Thus, we get
\[ \Rightarrow S = a{S_1} + b{S_2} \ldots \ldots \ldots \left( 1 \right)\]
We will simplify \[{S_1}\] first.
We have
\[ \Rightarrow {S_1} = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}\]
Multiplying both sides of the equation by \[\omega \], we get
\[\begin{array}{l} \Rightarrow {S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + n{\omega ^n}\\ \Rightarrow {S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n}\end{array}\]
Subtracting the equation \[{S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n}\] from the equation \[{S_1} = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}\], we get
\[ \Rightarrow {S_1} - {S_1}\omega = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}} - \left( {\omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n}} \right)\]
Thus, we get
\[\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + \left[ {n - \left( {n - 1} \right)} \right]{\omega ^{n - 1}} - n{\omega ^n}\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + \left[ {n - n + 1} \right]{\omega ^{n - 1}} - n{\omega ^n}\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} - n{\omega ^n}\end{array}\]
The terms in the sum \[1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}}\] form a geometric progression, where the first term is 1, the common ratio is \[\omega \], and the number of terms is \[n\].
Substituting \[n = n\], \[r = \omega \], and \[a = 1\] in the formula for sum of terms of a G.P., \[\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], we get
\[\begin{array}{l} \Rightarrow 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{1\left( {{\omega ^n} - 1} \right)}}{{\omega - 1}}\\ \Rightarrow 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}} \ldots \ldots \ldots \left( 2 \right)\end{array}\]
Substituting \[1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}}\] in the equation \[{S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} - n{\omega ^n}\], we get
\[ \Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}} - n{\omega ^n}\]
It is given that \[\omega \] is a complex \[n{\rm{th}}\] root of unity.
Therefore, we get
\[\omega = \sqrt[n]{1}\]
Thus, \[{\omega ^n} = 1\].
Substituting \[{\omega ^n} = 1\] in the equation, we get
\[\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{{1 - 1}}{{\omega - 1}} - n\left( 1 \right)\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{0}{{\omega - 1}} - n\end{array}\]
Thus, we get
\[\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = 0 - n\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = - n\end{array}\]
Dividing both sides of the equation by \[1 - \omega \], we get
\[\begin{array}{l} \Rightarrow \dfrac{{{S_1}\left( {1 - \omega } \right)}}{{1 - \omega }} = \dfrac{{ - n}}{{1 - \omega }}\\ \Rightarrow {S_1} = \dfrac{{ - n}}{{1 - \omega }}\end{array}\]
Now, we will find the sum \[{S_2}\].
We have
\[{S_2} = 1 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}}\]
Substituting \[1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}}\] from equation \[\left( 2 \right)\], we get
\[ \Rightarrow {S_2} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}}\]
Substituting \[{\omega ^n} = 1\] in the equation, we get
\[\begin{array}{l} \Rightarrow {S_2} = \dfrac{{1 - 1}}{{\omega - 1}}\\ \Rightarrow {S_2} = \dfrac{0}{{\omega - 1}}\end{array}\]
Thus, we get
\[ \Rightarrow {S_2} = 0\]
Now, we can find the sum \[S\].
Substituting \[{S_1} = \dfrac{{ - n}}{{1 - \omega }}\] and \[{S_2} = 0\] in equation \[\left( 1 \right)\], we get
\[ \Rightarrow S = a\left( {\dfrac{{ - n}}{{1 - \omega }}} \right) + b\left( 0 \right)\]
Multiplying the terms of the expression, we get
\[ \Rightarrow S = \dfrac{{ - an}}{{1 - \omega }} + 0\]
Therefore, we get
\[ \Rightarrow S = \dfrac{{ - an}}{{1 - \omega }}\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow S = \dfrac{{ - na}}{{ - \left( {\omega - 1} \right)}}\\ \Rightarrow S = \dfrac{{na}}{{\omega - 1}}\end{array}\]
\[\therefore \] We get the value of the sum \[\sum\limits_{r = 1}^n {\left( {ar + b} \right){\omega ^{r - 1}}} \] as \[\dfrac{{na}}{{\omega - 1}}\].
Thus, the correct option is option (c).
Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that \[a\left( {b + c} \right) = a \cdot b + a \cdot c\]. Here, the sum is in geometric progression. Geometric progression is a sequence or series in which the two consecutive differences are by a common ratio. However, arithmetic progression is a series or sequence in which there is a common difference between two consecutive numbers.
Here, we will expand this sum, and factor out \[a\] and \[b\] from the terms. Then, we will simplify the sum further by using the formula for the sum of terms of a geometric progression. Finally, we will use the given information to simplify the expression and obtain the required value of the sum.
Formula Used: We will use the formula for the sum of \[n\] terms of a G.P. is given by the formula \[\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], where \[a\] is the first term, \[r\] is the common ratio, and \[n\] is the number of terms of the G.P.
Complete step by step solution:
Let the sum \[\sum\limits_{r = 1}^n {\left( {ar + b} \right){\omega ^{r - 1}}} \] be \[S\].
Expanding the sum, we get
\[S = \left( {a \times 1 + b} \right){\omega ^{1 - 1}} + \left( {a \times 2 + b} \right){\omega ^{2 - 1}} + \left( {a \times 3 + b} \right){\omega ^{3 - 1}} + \ldots \ldots \ldots + \left( {a \times n + b} \right){\omega ^{n - 1}}\]
Simplifying the expansion, we get
\[\begin{array}{l} \Rightarrow S = \left( {a + b} \right){\omega ^0} + \left( {2a + b} \right){\omega ^1} + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\\ \Rightarrow S = \left( {a + b} \right)1 + \left( {2a + b} \right)\omega + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\\ \Rightarrow S = \left( {a + b} \right) + \left( {2a + b} \right)\omega + \left( {3a + b} \right){\omega ^2} + \ldots \ldots \ldots + \left( {an + b} \right){\omega ^{n - 1}}\end{array}\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow S = \left( {a + b} \right) + \left( {2a\omega + b\omega } \right) + \left( {3a{\omega ^2} + b{\omega ^2}} \right) + \ldots \ldots \ldots + \left( {an{\omega ^{n - 1}} + b{\omega ^{n - 1}}} \right)\]
Rewriting the equation by rearranging the terms, we get
\[ \Rightarrow S = \left( {a + 2a\omega + 3a{\omega ^2} + \ldots \ldots \ldots + an{\omega ^{n - 1}}} \right) + \left( {b + b\omega + b{\omega ^2} \ldots \ldots \ldots + b{\omega ^{n - 1}}} \right)\]
Factoring out \[a\] and \[b\] from the expansion, we can simplify the expansion as
\[ \Rightarrow S = a\left( {1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}} \right) + b\left( {1 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}}} \right)\]
Let \[1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}\] be \[{S_1}\] and \[1 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}}\] be \[{S_2}\].
Thus, we get
\[ \Rightarrow S = a{S_1} + b{S_2} \ldots \ldots \ldots \left( 1 \right)\]
We will simplify \[{S_1}\] first.
We have
\[ \Rightarrow {S_1} = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}\]
Multiplying both sides of the equation by \[\omega \], we get
\[\begin{array}{l} \Rightarrow {S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + n{\omega ^n}\\ \Rightarrow {S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n}\end{array}\]
Subtracting the equation \[{S_1}\omega = \omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n}\] from the equation \[{S_1} = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}}\], we get
\[ \Rightarrow {S_1} - {S_1}\omega = 1 + 2\omega + 3{\omega ^2} + \ldots \ldots \ldots + n{\omega ^{n - 1}} - \left( {\omega + 2{\omega ^2} + 3{\omega ^3} + \ldots \ldots \ldots + \left( {n - 1} \right){\omega ^{n - 1}} + n{\omega ^n}} \right)\]
Thus, we get
\[\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + \left[ {n - \left( {n - 1} \right)} \right]{\omega ^{n - 1}} - n{\omega ^n}\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + \left[ {n - n + 1} \right]{\omega ^{n - 1}} - n{\omega ^n}\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} - n{\omega ^n}\end{array}\]
The terms in the sum \[1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}}\] form a geometric progression, where the first term is 1, the common ratio is \[\omega \], and the number of terms is \[n\].
Substituting \[n = n\], \[r = \omega \], and \[a = 1\] in the formula for sum of terms of a G.P., \[\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], we get
\[\begin{array}{l} \Rightarrow 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{1\left( {{\omega ^n} - 1} \right)}}{{\omega - 1}}\\ \Rightarrow 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}} \ldots \ldots \ldots \left( 2 \right)\end{array}\]
Substituting \[1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}}\] in the equation \[{S_1}\left( {1 - \omega } \right) = 1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} - n{\omega ^n}\], we get
\[ \Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}} - n{\omega ^n}\]
It is given that \[\omega \] is a complex \[n{\rm{th}}\] root of unity.
Therefore, we get
\[\omega = \sqrt[n]{1}\]
Thus, \[{\omega ^n} = 1\].
Substituting \[{\omega ^n} = 1\] in the equation, we get
\[\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{{1 - 1}}{{\omega - 1}} - n\left( 1 \right)\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = \dfrac{0}{{\omega - 1}} - n\end{array}\]
Thus, we get
\[\begin{array}{l} \Rightarrow {S_1}\left( {1 - \omega } \right) = 0 - n\\ \Rightarrow {S_1}\left( {1 - \omega } \right) = - n\end{array}\]
Dividing both sides of the equation by \[1 - \omega \], we get
\[\begin{array}{l} \Rightarrow \dfrac{{{S_1}\left( {1 - \omega } \right)}}{{1 - \omega }} = \dfrac{{ - n}}{{1 - \omega }}\\ \Rightarrow {S_1} = \dfrac{{ - n}}{{1 - \omega }}\end{array}\]
Now, we will find the sum \[{S_2}\].
We have
\[{S_2} = 1 + \omega + {\omega ^2} \ldots \ldots \ldots + {\omega ^{n - 1}}\]
Substituting \[1 + \omega + {\omega ^2} + \ldots \ldots \ldots + {\omega ^{n - 1}} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}}\] from equation \[\left( 2 \right)\], we get
\[ \Rightarrow {S_2} = \dfrac{{{\omega ^n} - 1}}{{\omega - 1}}\]
Substituting \[{\omega ^n} = 1\] in the equation, we get
\[\begin{array}{l} \Rightarrow {S_2} = \dfrac{{1 - 1}}{{\omega - 1}}\\ \Rightarrow {S_2} = \dfrac{0}{{\omega - 1}}\end{array}\]
Thus, we get
\[ \Rightarrow {S_2} = 0\]
Now, we can find the sum \[S\].
Substituting \[{S_1} = \dfrac{{ - n}}{{1 - \omega }}\] and \[{S_2} = 0\] in equation \[\left( 1 \right)\], we get
\[ \Rightarrow S = a\left( {\dfrac{{ - n}}{{1 - \omega }}} \right) + b\left( 0 \right)\]
Multiplying the terms of the expression, we get
\[ \Rightarrow S = \dfrac{{ - an}}{{1 - \omega }} + 0\]
Therefore, we get
\[ \Rightarrow S = \dfrac{{ - an}}{{1 - \omega }}\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow S = \dfrac{{ - na}}{{ - \left( {\omega - 1} \right)}}\\ \Rightarrow S = \dfrac{{na}}{{\omega - 1}}\end{array}\]
\[\therefore \] We get the value of the sum \[\sum\limits_{r = 1}^n {\left( {ar + b} \right){\omega ^{r - 1}}} \] as \[\dfrac{{na}}{{\omega - 1}}\].
Thus, the correct option is option (c).
Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that \[a\left( {b + c} \right) = a \cdot b + a \cdot c\]. Here, the sum is in geometric progression. Geometric progression is a sequence or series in which the two consecutive differences are by a common ratio. However, arithmetic progression is a series or sequence in which there is a common difference between two consecutive numbers.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

