
If $^n{C_4}{,^n}{C_5}$ and $^n{C_6}$ are in A.P then $n$ is
(a) 7 or 14
(b) 7
(c) 14
(d) 14 or 21
Answer
584.4k+ views
Hint: We will first expand the given terms using $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Since, the given terms are in A.P. then, the difference of first and second term is equal to the difference of second and third term. We will substitute the required values and then solve for the value of $n$
Complete step-by-step answer:
We will first write the values of $^n{C_4}{,^n}{C_5}$ and $^n{C_6}$.
As we know that $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Then,
\[^n{C_4} = \dfrac{{n!}}{{4!\left( {n - 4} \right)!}}\],
\[^n{C_5} = \dfrac{{n!}}{{5!\left( {n - 5} \right)!}}\] and
\[^n{C_6} = \dfrac{{n!}}{{6!\left( {n - 6} \right)!}}\]
We are given that $^n{C_4}{,^n}{C_5}$ and $^n{C_6}$ are in A.P, that they have equal common difference.
\[\dfrac{{n!}}{{5!\left( {n - 5} \right)!}} - \dfrac{{n!}}{{4!\left( {n - 4} \right)!}} = \dfrac{{n!}}{{6!\left( {n - 6} \right)!}} - \dfrac{{n!}}{{5!\left( {n - 5} \right)!}}\]
We will take $n!$ common and cancel from both sides.
Then, simplify the terms by taking common terms out.
$
\dfrac{1}{{5!\left( {n - 5} \right)!}} - \dfrac{1}{{4!\left( {n - 4} \right)!}} = \dfrac{1}{{6!\left( {n - 6} \right)!}} - \dfrac{1}{{5!\left( {n - 5} \right)!}} \\
\Rightarrow \dfrac{1}{{4!\left( {n - 5} \right)!}}\left( {\dfrac{1}{5} - \dfrac{1}{{\left( {n - 4} \right)}}} \right) = \dfrac{1}{{5!\left( {n - 6} \right)!}}\left( {\dfrac{1}{6} - \dfrac{1}{{\left( {n - 5} \right)}}} \right) \\
$
Since, we know $n! = n.\left( {n - 1} \right).\left( {n - 2} \right).....3.2.1$
$
\dfrac{1}{{4!\left( {n - 5} \right).\left( {n - 6} \right)!}}\left( {\dfrac{1}{5} - \dfrac{1}{{\left( {n - 4} \right)}}} \right) = \dfrac{1}{{5.4!\left( {n - 6} \right)!}}\left( {\dfrac{1}{6} - \dfrac{1}{{\left( {n - 5} \right)}}} \right) \\
\Rightarrow \dfrac{1}{{n - 5}}\left( {\dfrac{{n - 4 - 5}}{{5\left( {n - 4} \right)}}} \right) = \dfrac{1}{5}\left( {\dfrac{{n - 5 - 6}}{{6\left( {n - 5} \right)}}} \right) \\
\Rightarrow 6\left( {\dfrac{{n - 9}}{{n - 4}}} \right) = \left( {n - 11} \right) \\
$
Then, we will simplify the equation,
\[6\left( {\dfrac{{n - 9}}{{n - 4}}} \right) - \left( {n - 11} \right) = 0\]
Take LCM and then solve the for the value of $n$
$
\left( {\dfrac{{6\left( {n - 9} \right) - \left( {n - 11} \right)\left( {n - 4} \right)}}{{n - 4}}} \right) = 0 \\
\Rightarrow 6\left( {n - 9} \right) - \left( {n - 11} \right)\left( {n - 4} \right) = 0 \\
\Rightarrow 6n - 54 - {n^2} + 15n - 44 = 0 \\
\Rightarrow - {n^2} + 21n - 98 = 0 \\
\Rightarrow {n^2} - 21n + 98 = 0 \\
$
Factorise the above equation,
$
{n^2} - 21n + 98 = 0 \\
\Rightarrow {n^2} - 14n - 7n + 98 = 0 \\
\Rightarrow n\left( {n - 14} \right) - 7\left( {n - 14} \right) = 0 \\
\Rightarrow \left( {n - 7} \right)\left( {n - 14} \right) = 0 \\
$
Equate the factors to 0 to find the value of $n$
$
\left( {n - 7} \right) = 0 \\
n = 7 \\
$
And
$
n - 14 = 0 \\
n = 14 \\
$
Therefore, the value of $n$ is 7 or 14.
Hence, option A is correct.
Note: The terms that are in A.P have a common difference between them which is the same for any two consecutive terms. If a sequence ${a_1},{a_2},{a_3}....$ is an A.P., then ${a_2} - {a_1} = {a_3} - {a_2}$ or we can also form the equation, such as $2{a_2} = {a_1} + {a_3}$.
Complete step-by-step answer:
We will first write the values of $^n{C_4}{,^n}{C_5}$ and $^n{C_6}$.
As we know that $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Then,
\[^n{C_4} = \dfrac{{n!}}{{4!\left( {n - 4} \right)!}}\],
\[^n{C_5} = \dfrac{{n!}}{{5!\left( {n - 5} \right)!}}\] and
\[^n{C_6} = \dfrac{{n!}}{{6!\left( {n - 6} \right)!}}\]
We are given that $^n{C_4}{,^n}{C_5}$ and $^n{C_6}$ are in A.P, that they have equal common difference.
\[\dfrac{{n!}}{{5!\left( {n - 5} \right)!}} - \dfrac{{n!}}{{4!\left( {n - 4} \right)!}} = \dfrac{{n!}}{{6!\left( {n - 6} \right)!}} - \dfrac{{n!}}{{5!\left( {n - 5} \right)!}}\]
We will take $n!$ common and cancel from both sides.
Then, simplify the terms by taking common terms out.
$
\dfrac{1}{{5!\left( {n - 5} \right)!}} - \dfrac{1}{{4!\left( {n - 4} \right)!}} = \dfrac{1}{{6!\left( {n - 6} \right)!}} - \dfrac{1}{{5!\left( {n - 5} \right)!}} \\
\Rightarrow \dfrac{1}{{4!\left( {n - 5} \right)!}}\left( {\dfrac{1}{5} - \dfrac{1}{{\left( {n - 4} \right)}}} \right) = \dfrac{1}{{5!\left( {n - 6} \right)!}}\left( {\dfrac{1}{6} - \dfrac{1}{{\left( {n - 5} \right)}}} \right) \\
$
Since, we know $n! = n.\left( {n - 1} \right).\left( {n - 2} \right).....3.2.1$
$
\dfrac{1}{{4!\left( {n - 5} \right).\left( {n - 6} \right)!}}\left( {\dfrac{1}{5} - \dfrac{1}{{\left( {n - 4} \right)}}} \right) = \dfrac{1}{{5.4!\left( {n - 6} \right)!}}\left( {\dfrac{1}{6} - \dfrac{1}{{\left( {n - 5} \right)}}} \right) \\
\Rightarrow \dfrac{1}{{n - 5}}\left( {\dfrac{{n - 4 - 5}}{{5\left( {n - 4} \right)}}} \right) = \dfrac{1}{5}\left( {\dfrac{{n - 5 - 6}}{{6\left( {n - 5} \right)}}} \right) \\
\Rightarrow 6\left( {\dfrac{{n - 9}}{{n - 4}}} \right) = \left( {n - 11} \right) \\
$
Then, we will simplify the equation,
\[6\left( {\dfrac{{n - 9}}{{n - 4}}} \right) - \left( {n - 11} \right) = 0\]
Take LCM and then solve the for the value of $n$
$
\left( {\dfrac{{6\left( {n - 9} \right) - \left( {n - 11} \right)\left( {n - 4} \right)}}{{n - 4}}} \right) = 0 \\
\Rightarrow 6\left( {n - 9} \right) - \left( {n - 11} \right)\left( {n - 4} \right) = 0 \\
\Rightarrow 6n - 54 - {n^2} + 15n - 44 = 0 \\
\Rightarrow - {n^2} + 21n - 98 = 0 \\
\Rightarrow {n^2} - 21n + 98 = 0 \\
$
Factorise the above equation,
$
{n^2} - 21n + 98 = 0 \\
\Rightarrow {n^2} - 14n - 7n + 98 = 0 \\
\Rightarrow n\left( {n - 14} \right) - 7\left( {n - 14} \right) = 0 \\
\Rightarrow \left( {n - 7} \right)\left( {n - 14} \right) = 0 \\
$
Equate the factors to 0 to find the value of $n$
$
\left( {n - 7} \right) = 0 \\
n = 7 \\
$
And
$
n - 14 = 0 \\
n = 14 \\
$
Therefore, the value of $n$ is 7 or 14.
Hence, option A is correct.
Note: The terms that are in A.P have a common difference between them which is the same for any two consecutive terms. If a sequence ${a_1},{a_2},{a_3}....$ is an A.P., then ${a_2} - {a_1} = {a_3} - {a_2}$ or we can also form the equation, such as $2{a_2} = {a_1} + {a_3}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

