
If n is even, then in the expansion of ${{\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+... \right)}^{2}}$ , the coefficient of ${{x}^{n}}$ is
A. $\dfrac{{{2}^{n}}}{n!}$
B. $\dfrac{{{2}^{n}}-2}{n!}$
C. $\dfrac{{{2}^{n-1}}-1}{n!}$
D. $\dfrac{{{2}^{n-1}}}{n!}$ .
Answer
607.2k+ views
Hint:Use Taylor series for expansion of ${{e}^{x}}$ and ${{e}^{-x}}$ .Add the series and square then to get the series given. Now fix ${{e}^{2x}}$ and ${{e}^{-2x}}$ and add them. Substitute their values back to the squared series and simplify it to get a coefficient of ${{x}^{n}}$ .
Complete step-by-step answer:
We have been given the expansion of an expression. We need to find the coefficient of ${{x}^{n}}$ from the given expression.
We have been given, ${{\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+... \right)}^{2}}$ .
According to Taylor series which is an expansion of some function into an infinite sum of terms, where each term has a larger exponent like $x,{{x}^{2}},{{x}^{3}}.....etc$ .
By using Taylor series, we can say that,
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}+......\to (1)$ .
Similarly, ${{e}^{-x}}=1-\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}.....\to (2)$ .
Now let us add (1) and (2).
${{e}^{x}}+{{e}^{-x}}=\left( 1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+..... \right)+\left( 1-\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+.... \right)$ .
${{e}^{x}}+{{e}^{-x}}=2\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+\dfrac{{{x}^{6}}}{6!}+..... \right)$ .
Now let us find the square of $\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)$ .
${{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}=\dfrac{1}{4}\left( {{e}^{2x}}+2{{e}^{x}}.{{e}^{-x}}+{{e}^{-2x}} \right)$ .
$\because {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+b$ .
${{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}=\dfrac{1}{4}\left[ {{e}^{2x}}+{{e}^{-2x}}+2 \right]\to (4)$ .
We know ${{e}^{x}}$ and ${{e}^{-x}}$ from Taylor’s sense. Thus let us find the expansion of ${{e}^{2x}}$ and ${{e}^{-2x}}$ . Thus substitute $(2x)$ in place of $x$ .
$\begin{align}
& {{e}^{2x}}=1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.....\to (5) \\
& {{e}^{-2x}}=1-\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}-\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.....\to (6) \\
\end{align}$
Bow let us add (5) and (6). We get,
\[\begin{align}
& {{e}^{2x}}+{{e}^{-2x}}=\left( 1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.... \right)+\left( 1-\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}-\dfrac{{{\left( 2x \right)}^{3}}}{3!} \right) \\
& {{e}^{2x}}+{{e}^{-2x}}=2\left( 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right)\to (7) \\
\end{align}\]
Now let us substitute the value of (7) in (4)
$\begin{align}
& =\dfrac{1}{4}\left( {{e}^{2x}}+{{e}^{-2x}}+2 \right)=\dfrac{1}{4}\left[ 2\left( 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right)+2 \right] \\
& =\dfrac{2}{4}\left[ 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+....+1 \right] \\
& =\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right]. \\
\end{align}$
Now, $2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+....$ is of the form $\left( \dfrac{{{2}^{n}}{{x}^{n}}}{n!} \right).$
Thus we can find,
$\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+..... \right]=\dfrac{1}{2}\times \left( \dfrac{{{2}^{n}}{{x}^{n}}}{n!} \right)$ .
$\dfrac{1}{2}.\dfrac{{{2}^{n}}}{n!}{{x}^{n}}=\dfrac{{{2}^{n}}\times {{2}^{-1}}}{n!}{{x}^{n}}$ .
$=\dfrac{{{2}^{n-1}}}{n!}{{x}^{n}}$ .
We were asked to find the coefficient of ${{x}^{n}}$ . We get,
$\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right]=\dfrac{{{2}^{n-1}}}{n!}{{x}^{n}}$ .
Hence the coefficient of ${{x}^{2}}=\dfrac{{{2}^{n-1}}}{n!}$ .
Thus we got the required value. Hence option (D) is the correct answer.
Note: We have series for the given expansion. You should be able to identify the given expansion. So it is important that you learn basic expansions of ${{e}^{x}},{{e}^{-x}},\cos x,{{\left( 1-x \right)}^{n}},{{\left( 1+x \right)}^{n}}etc$.Students should remember the expansion of ${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}+......\to (1)$ and replacing x by -x we get expansion of ${{e}^{-x}}$.
Complete step-by-step answer:
We have been given the expansion of an expression. We need to find the coefficient of ${{x}^{n}}$ from the given expression.
We have been given, ${{\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+... \right)}^{2}}$ .
According to Taylor series which is an expansion of some function into an infinite sum of terms, where each term has a larger exponent like $x,{{x}^{2}},{{x}^{3}}.....etc$ .
By using Taylor series, we can say that,
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}+......\to (1)$ .
Similarly, ${{e}^{-x}}=1-\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}.....\to (2)$ .
Now let us add (1) and (2).
${{e}^{x}}+{{e}^{-x}}=\left( 1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+..... \right)+\left( 1-\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+.... \right)$ .
${{e}^{x}}+{{e}^{-x}}=2\left( 1+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+\dfrac{{{x}^{6}}}{6!}+..... \right)$ .
Now let us find the square of $\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)$ .
${{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}=\dfrac{1}{4}\left( {{e}^{2x}}+2{{e}^{x}}.{{e}^{-x}}+{{e}^{-2x}} \right)$ .
$\because {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+b$ .
${{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}=\dfrac{1}{4}\left[ {{e}^{2x}}+{{e}^{-2x}}+2 \right]\to (4)$ .
We know ${{e}^{x}}$ and ${{e}^{-x}}$ from Taylor’s sense. Thus let us find the expansion of ${{e}^{2x}}$ and ${{e}^{-2x}}$ . Thus substitute $(2x)$ in place of $x$ .
$\begin{align}
& {{e}^{2x}}=1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.....\to (5) \\
& {{e}^{-2x}}=1-\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}-\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.....\to (6) \\
\end{align}$
Bow let us add (5) and (6). We get,
\[\begin{align}
& {{e}^{2x}}+{{e}^{-2x}}=\left( 1+\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{3}}}{3!}+.... \right)+\left( 1-\dfrac{2x}{1!}+\dfrac{{{\left( 2x \right)}^{2}}}{2!}-\dfrac{{{\left( 2x \right)}^{3}}}{3!} \right) \\
& {{e}^{2x}}+{{e}^{-2x}}=2\left( 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right)\to (7) \\
\end{align}\]
Now let us substitute the value of (7) in (4)
$\begin{align}
& =\dfrac{1}{4}\left( {{e}^{2x}}+{{e}^{-2x}}+2 \right)=\dfrac{1}{4}\left[ 2\left( 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right)+2 \right] \\
& =\dfrac{2}{4}\left[ 1+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+....+1 \right] \\
& =\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right]. \\
\end{align}$
Now, $2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+....$ is of the form $\left( \dfrac{{{2}^{n}}{{x}^{n}}}{n!} \right).$
Thus we can find,
$\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+..... \right]=\dfrac{1}{2}\times \left( \dfrac{{{2}^{n}}{{x}^{n}}}{n!} \right)$ .
$\dfrac{1}{2}.\dfrac{{{2}^{n}}}{n!}{{x}^{n}}=\dfrac{{{2}^{n}}\times {{2}^{-1}}}{n!}{{x}^{n}}$ .
$=\dfrac{{{2}^{n-1}}}{n!}{{x}^{n}}$ .
We were asked to find the coefficient of ${{x}^{n}}$ . We get,
$\dfrac{1}{2}\left[ 2+\dfrac{{{\left( 2x \right)}^{2}}}{2!}+\dfrac{{{\left( 2x \right)}^{4}}}{4!}+.... \right]=\dfrac{{{2}^{n-1}}}{n!}{{x}^{n}}$ .
Hence the coefficient of ${{x}^{2}}=\dfrac{{{2}^{n-1}}}{n!}$ .
Thus we got the required value. Hence option (D) is the correct answer.
Note: We have series for the given expansion. You should be able to identify the given expansion. So it is important that you learn basic expansions of ${{e}^{x}},{{e}^{-x}},\cos x,{{\left( 1-x \right)}^{n}},{{\left( 1+x \right)}^{n}}etc$.Students should remember the expansion of ${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}+......\to (1)$ and replacing x by -x we get expansion of ${{e}^{-x}}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

