
If n is an integer, prove that
$\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
Answer
581.4k+ views
Hint:
It is given in the question If n is an integer. Then, we will prove that
$\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
By putting values of n = 1, 2, 3 and check for every individual value whether the value satisfies the equation or not.
Complete step by step solution:
It is given in the question If n is an integer. Then, we have to prove that
$\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
Now, put n = 1 in the above equation
$ = \tan \left\{ {\dfrac{\pi }{2} + \left( { - 1} \right)\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{\pi }{2} - \dfrac{\pi }{4}} \right\}$
$ = \tan \dfrac{\pi }{4}$
Since, we know that $\tan \dfrac{\pi }{4}$ is equal to 1.
$\therefore $ =1
Thus, for \[n = 1\] the given equation is satisfied.
Now, taking \[n = 2\]
$ = \tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{2\pi }}{2} + {{\left( { - 1} \right)}^2}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\pi + \dfrac{\pi }{4}} \right\}$
Since, we know that $\pi + \dfrac{\pi }{4}$ lies in third quadrant and in third quadrant tan function is positive.
$ = \tan \dfrac{\pi }{4}$
=1
Thus, for \[n = 2\] the given equation is satisfied.
Now, putting \[n = 3\]
$ = \tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{3\pi }}{2} + {{\left( { - 1} \right)}^3}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{3\pi }}{2} - \dfrac{\pi }{4}} \right\}$
Since, we know that $\dfrac{{3\pi }}{2} - \dfrac{\pi }{4}$ lies in third quadrant and in third quadrant tan function is positive.
$ = \tan \dfrac{\pi }{4}$
=1
Thus, for \[n = 3\] the given equation is satisfied.
Hence proved $\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
Note:
The above question can be solved with another method:
It is given in the question If n is an integer. Then, we have to prove that
$\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
Now, put 2k in the above equation.
$ = \tan \left\{ {\dfrac{{2k\pi }}{2} + {{\left( { - 1} \right)}^{2k}}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + {{\left( { - 1} \right)}^{2k}}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + \dfrac{\pi }{4}} \right\}$ for every $k \in Z$
For every $k \in Z$ , $\tan \left\{ {k\pi + \dfrac{\pi }{4}} \right\}$ is equal to 1.
=1
Thus, for n = 2k the given equation is satisfied.
Now, taking \[n = 2k + 1\] ,
$ = \tan \left\{ {\dfrac{{\left( {2k + 1} \right)\pi }}{2} + {{\left( { - 1} \right)}^{2k + 1}}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{\left( {2k\pi + \pi } \right)}}{2} + {{\left( { - 1} \right)}^{2k + 1}}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{2k\pi }}{2} + \dfrac{\pi }{2} + {{\left( { - 1} \right)}^{2k}}{{\left( { - 1} \right)}^1}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + \dfrac{\pi }{2} + \left( {1 \times - 1} \right)\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + \dfrac{\pi }{2} - \dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + \dfrac{\pi }{4}} \right\}$
=1
Thus, for \[n = 2k + 1\] the given equation is satisfied.
Hence proved $\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
It is given in the question If n is an integer. Then, we will prove that
$\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
By putting values of n = 1, 2, 3 and check for every individual value whether the value satisfies the equation or not.
Complete step by step solution:
It is given in the question If n is an integer. Then, we have to prove that
$\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
Now, put n = 1 in the above equation
$ = \tan \left\{ {\dfrac{\pi }{2} + \left( { - 1} \right)\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{\pi }{2} - \dfrac{\pi }{4}} \right\}$
$ = \tan \dfrac{\pi }{4}$
Since, we know that $\tan \dfrac{\pi }{4}$ is equal to 1.
$\therefore $ =1
Thus, for \[n = 1\] the given equation is satisfied.
Now, taking \[n = 2\]
$ = \tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{2\pi }}{2} + {{\left( { - 1} \right)}^2}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\pi + \dfrac{\pi }{4}} \right\}$
Since, we know that $\pi + \dfrac{\pi }{4}$ lies in third quadrant and in third quadrant tan function is positive.
$ = \tan \dfrac{\pi }{4}$
=1
Thus, for \[n = 2\] the given equation is satisfied.
Now, putting \[n = 3\]
$ = \tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{3\pi }}{2} + {{\left( { - 1} \right)}^3}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{3\pi }}{2} - \dfrac{\pi }{4}} \right\}$
Since, we know that $\dfrac{{3\pi }}{2} - \dfrac{\pi }{4}$ lies in third quadrant and in third quadrant tan function is positive.
$ = \tan \dfrac{\pi }{4}$
=1
Thus, for \[n = 3\] the given equation is satisfied.
Hence proved $\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
Note:
The above question can be solved with another method:
It is given in the question If n is an integer. Then, we have to prove that
$\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
Now, put 2k in the above equation.
$ = \tan \left\{ {\dfrac{{2k\pi }}{2} + {{\left( { - 1} \right)}^{2k}}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + {{\left( { - 1} \right)}^{2k}}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + \dfrac{\pi }{4}} \right\}$ for every $k \in Z$
For every $k \in Z$ , $\tan \left\{ {k\pi + \dfrac{\pi }{4}} \right\}$ is equal to 1.
=1
Thus, for n = 2k the given equation is satisfied.
Now, taking \[n = 2k + 1\] ,
$ = \tan \left\{ {\dfrac{{\left( {2k + 1} \right)\pi }}{2} + {{\left( { - 1} \right)}^{2k + 1}}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{\left( {2k\pi + \pi } \right)}}{2} + {{\left( { - 1} \right)}^{2k + 1}}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {\dfrac{{2k\pi }}{2} + \dfrac{\pi }{2} + {{\left( { - 1} \right)}^{2k}}{{\left( { - 1} \right)}^1}\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + \dfrac{\pi }{2} + \left( {1 \times - 1} \right)\dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + \dfrac{\pi }{2} - \dfrac{\pi }{4}} \right\}$
$ = \tan \left\{ {k\pi + \dfrac{\pi }{4}} \right\}$
=1
Thus, for \[n = 2k + 1\] the given equation is satisfied.
Hence proved $\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

