
If n is an integer greater than $1$, then $a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n) = $
$
A.{\text{ a}} \\
{\text{B}}{\text{. 0}} \\
{\text{C}}{\text{. }}{{\text{a}}^2} \\
{\text{D}}{\text{. }}{{\text{2}}^n} \\
$
Answer
590.1k+ views
Hint: Use here expansion of the series formula and simplify using basic mathematical operations. To expand the given series use $\sum\limits_{r = 0}^n {{{( - 1)}^r}{}^n{C_r}} (a - r)$.
Complete step by step answer:
Take the given equation -
$a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n)$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}{}^n{C_r}} (a - r)$
Now, expand the right hand side of the equation – by the factor (a-r)
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}r$
Now put $r = 0$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \underline {\sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}r} - \sum\limits_{r = 1}^n {{{( - 1)}^r}} {}^n{C_r}r$
The middle term becomes zero when $r = 0$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \sum\limits_{r = 1}^n {{{( - 1)}^r}} {}^n{C_r}r$
\[ = a{(1 - 1)^n} - \sum\limits_{r = 1}^n {{{( - 1)}^r}} \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}r\]
(Using, ${}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}$ )
(Also, ${(1 + x)^n} = \sum\limits_{r = 0}^n {{}^n} {C_r}{x^r}$ )
As, one minus one is zero, first term becomes zero
$
= 0 - n{\sum\limits_{r = 1}^n {( - 1)} ^r}{}^{n - 1}{C_{r - 1}} \\
= - n{\sum\limits_{r = 1}^n {( - 1)} ^r}{}^{n - 1}{C_{r - 1}} \\
$
Now, expand the above equation –
$ = - n[ - {}^{n - 1}{C_0} + {}^{n - 1}{C_1} + {}^{n - 1}{C_2}..........{( - 1)^{n - 1}}{}^{n - 1}{C_{n - 1}}]$
As, ${(1 - 1)^{n - 1}} = $ $
{(1 - 1)^{n - 1}} = {}^{n - 1}{C_0} + {}^{n - 1}{C_1} + {}^{n - 1}{C_2}..........{( - 1)^{n - 1}}{}^{n - 1}{C_{n - 1}} \\
{(1 - 1)^{n - 1}} = 0 \\
$
[As one minus one is equal to zero, place the value equal to zero]
$
= n(0) \\
= 0 \\
$
Therefore, : If n is an integer greater than $1$, then $a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n) = 0$
Hence, from the above multiple choices, the option B is the correct answer.
Note: The summation and series are the most important part of the probability theory. One should remember the basic formulas for the finite and infinite series. And remember to use applicable basic simplifications of the equations.
Complete step by step answer:
Take the given equation -
$a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n)$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}{}^n{C_r}} (a - r)$
Now, expand the right hand side of the equation – by the factor (a-r)
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}r$
Now put $r = 0$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \underline {\sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}r} - \sum\limits_{r = 1}^n {{{( - 1)}^r}} {}^n{C_r}r$
The middle term becomes zero when $r = 0$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \sum\limits_{r = 1}^n {{{( - 1)}^r}} {}^n{C_r}r$
\[ = a{(1 - 1)^n} - \sum\limits_{r = 1}^n {{{( - 1)}^r}} \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}r\]
(Using, ${}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}$ )
(Also, ${(1 + x)^n} = \sum\limits_{r = 0}^n {{}^n} {C_r}{x^r}$ )
As, one minus one is zero, first term becomes zero
$
= 0 - n{\sum\limits_{r = 1}^n {( - 1)} ^r}{}^{n - 1}{C_{r - 1}} \\
= - n{\sum\limits_{r = 1}^n {( - 1)} ^r}{}^{n - 1}{C_{r - 1}} \\
$
Now, expand the above equation –
$ = - n[ - {}^{n - 1}{C_0} + {}^{n - 1}{C_1} + {}^{n - 1}{C_2}..........{( - 1)^{n - 1}}{}^{n - 1}{C_{n - 1}}]$
As, ${(1 - 1)^{n - 1}} = $ $
{(1 - 1)^{n - 1}} = {}^{n - 1}{C_0} + {}^{n - 1}{C_1} + {}^{n - 1}{C_2}..........{( - 1)^{n - 1}}{}^{n - 1}{C_{n - 1}} \\
{(1 - 1)^{n - 1}} = 0 \\
$
[As one minus one is equal to zero, place the value equal to zero]
$
= n(0) \\
= 0 \\
$
Therefore, : If n is an integer greater than $1$, then $a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n) = 0$
Hence, from the above multiple choices, the option B is the correct answer.
Note: The summation and series are the most important part of the probability theory. One should remember the basic formulas for the finite and infinite series. And remember to use applicable basic simplifications of the equations.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

