
If n is an integer greater than $1$, then $a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n) = $
$
A.{\text{ a}} \\
{\text{B}}{\text{. 0}} \\
{\text{C}}{\text{. }}{{\text{a}}^2} \\
{\text{D}}{\text{. }}{{\text{2}}^n} \\
$
Answer
574.8k+ views
Hint: Use here expansion of the series formula and simplify using basic mathematical operations. To expand the given series use $\sum\limits_{r = 0}^n {{{( - 1)}^r}{}^n{C_r}} (a - r)$.
Complete step by step answer:
Take the given equation -
$a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n)$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}{}^n{C_r}} (a - r)$
Now, expand the right hand side of the equation – by the factor (a-r)
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}r$
Now put $r = 0$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \underline {\sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}r} - \sum\limits_{r = 1}^n {{{( - 1)}^r}} {}^n{C_r}r$
The middle term becomes zero when $r = 0$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \sum\limits_{r = 1}^n {{{( - 1)}^r}} {}^n{C_r}r$
\[ = a{(1 - 1)^n} - \sum\limits_{r = 1}^n {{{( - 1)}^r}} \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}r\]
(Using, ${}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}$ )
(Also, ${(1 + x)^n} = \sum\limits_{r = 0}^n {{}^n} {C_r}{x^r}$ )
As, one minus one is zero, first term becomes zero
$
= 0 - n{\sum\limits_{r = 1}^n {( - 1)} ^r}{}^{n - 1}{C_{r - 1}} \\
= - n{\sum\limits_{r = 1}^n {( - 1)} ^r}{}^{n - 1}{C_{r - 1}} \\
$
Now, expand the above equation –
$ = - n[ - {}^{n - 1}{C_0} + {}^{n - 1}{C_1} + {}^{n - 1}{C_2}..........{( - 1)^{n - 1}}{}^{n - 1}{C_{n - 1}}]$
As, ${(1 - 1)^{n - 1}} = $ $
{(1 - 1)^{n - 1}} = {}^{n - 1}{C_0} + {}^{n - 1}{C_1} + {}^{n - 1}{C_2}..........{( - 1)^{n - 1}}{}^{n - 1}{C_{n - 1}} \\
{(1 - 1)^{n - 1}} = 0 \\
$
[As one minus one is equal to zero, place the value equal to zero]
$
= n(0) \\
= 0 \\
$
Therefore, : If n is an integer greater than $1$, then $a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n) = 0$
Hence, from the above multiple choices, the option B is the correct answer.
Note: The summation and series are the most important part of the probability theory. One should remember the basic formulas for the finite and infinite series. And remember to use applicable basic simplifications of the equations.
Complete step by step answer:
Take the given equation -
$a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n)$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}{}^n{C_r}} (a - r)$
Now, expand the right hand side of the equation – by the factor (a-r)
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}r$
Now put $r = 0$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \underline {\sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}r} - \sum\limits_{r = 1}^n {{{( - 1)}^r}} {}^n{C_r}r$
The middle term becomes zero when $r = 0$
$ = \sum\limits_{r = 0}^n {{{( - 1)}^r}} {}^n{C_r}a - \sum\limits_{r = 1}^n {{{( - 1)}^r}} {}^n{C_r}r$
\[ = a{(1 - 1)^n} - \sum\limits_{r = 1}^n {{{( - 1)}^r}} \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}r\]
(Using, ${}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}$ )
(Also, ${(1 + x)^n} = \sum\limits_{r = 0}^n {{}^n} {C_r}{x^r}$ )
As, one minus one is zero, first term becomes zero
$
= 0 - n{\sum\limits_{r = 1}^n {( - 1)} ^r}{}^{n - 1}{C_{r - 1}} \\
= - n{\sum\limits_{r = 1}^n {( - 1)} ^r}{}^{n - 1}{C_{r - 1}} \\
$
Now, expand the above equation –
$ = - n[ - {}^{n - 1}{C_0} + {}^{n - 1}{C_1} + {}^{n - 1}{C_2}..........{( - 1)^{n - 1}}{}^{n - 1}{C_{n - 1}}]$
As, ${(1 - 1)^{n - 1}} = $ $
{(1 - 1)^{n - 1}} = {}^{n - 1}{C_0} + {}^{n - 1}{C_1} + {}^{n - 1}{C_2}..........{( - 1)^{n - 1}}{}^{n - 1}{C_{n - 1}} \\
{(1 - 1)^{n - 1}} = 0 \\
$
[As one minus one is equal to zero, place the value equal to zero]
$
= n(0) \\
= 0 \\
$
Therefore, : If n is an integer greater than $1$, then $a - {}^n{C_1}(a - 1) + {}^n{C_2}(a - 2) - ............ + {( - 1)^n}(a - n) = 0$
Hence, from the above multiple choices, the option B is the correct answer.
Note: The summation and series are the most important part of the probability theory. One should remember the basic formulas for the finite and infinite series. And remember to use applicable basic simplifications of the equations.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

