
If $n = 10,\sum x = 50,\sum y = - 30,\sum {{x^2}} = 290,\sum {{y^2}} = 300,\sum {xy} = - 115$, then find the coefficient of correlation.
Answer
446.7k+ views
Hint: First find the standard deviation of $x$ by the formula ${\sigma _x} = \sqrt {\dfrac{{\sum {{x^2}} }}{n} - {{\left( {\dfrac{{\sum x }}{n}} \right)}^2}} $. Similarly, find the standard deviation of $y$. After that find the covariance by the formula $Cov\left( {x,y} \right) = \dfrac{{\sum {xy} }}{n} - \dfrac{{\sum x }}{n} \cdot \dfrac{{\sum y }}{n}$. Then use the values to calculate the coefficient of correlation by the formula $\dfrac{{Cov\left( {x,y} \right)}}{{{\sigma _x}{\sigma _y}}}$.
Complete Step by Step Solution:
The correlation coefficient is a statistical measure of the strength in the relationship between the relative movements of two variables. The values range between -1 and 1. If the calculated number is greater than 1 or less than -1 means that there is an error in the correlation measurement. A correlation of -1 shows a perfect negative correlation, while a correlation of 1 shows a perfect positive correlation. A correlation of 0 shows no linear relationship between the movement of the two variables.
To calculate the product-moment correlation, one must first determine the covariance of the two variables in question. Next, one must calculate each variable's standard deviation. The correlation coefficient is determined by dividing the covariance by the product of the two variables' standard deviations.
Now, calculate the standard deviation of $x$ by the formula,
${\sigma _x} = \sqrt {\dfrac{{\sum {{x^2}} }}{n} - {{\left( {\dfrac{{\sum x }}{n}} \right)}^2}} $
Substitute the values,
$ \Rightarrow {\sigma _x} = \sqrt {\dfrac{{290}}{{10}} - {{\left( {\dfrac{{50}}{{10}}} \right)}^2}} $
Cancel out the common factors,
$ \Rightarrow {\sigma _x} = \sqrt {29 - {{\left( 5 \right)}^2}} $
Square the term and subtract from 29,
$ \Rightarrow {\sigma _x} = \sqrt 4 $
So, the standard deviation of $x$ is,
$\therefore {\sigma _x} = 2$
Now, calculate the standard deviation of $y$ by the formula,
${\sigma _y} = \sqrt {\dfrac{{\sum {{y^2}} }}{n} - {{\left( {\dfrac{{\sum y }}{n}} \right)}^2}} $
Substitute the values,
$ \Rightarrow {\sigma _y} = \sqrt {\dfrac{{300}}{{10}} - {{\left( {\dfrac{{ - 30}}{{10}}} \right)}^2}} $
Cancel out the common factors,
$ \Rightarrow {\sigma _y} = \sqrt {30 - {{\left( { - 3} \right)}^2}} $
Square the term and subtract from 30,
$ \Rightarrow {\sigma _y} = \sqrt {21} $
So, the standard deviation of $y$ is,
$\therefore {\sigma _y} = 4.58$
Now calculate the covariance by the formula,
$Cov\left( {x,y} \right) = \dfrac{{\sum {xy} }}{n} - \dfrac{{\sum x }}{n} \cdot \dfrac{{\sum y }}{n}$
Substitute the values,
$ \Rightarrow Cov\left( {x,y} \right) = \dfrac{{ - 115}}{{10}} - \dfrac{{50}}{{10}} \cdot \dfrac{{ - 30}}{{10}}$
Cancel out the common factors,
$ \Rightarrow Cov\left( {x,y} \right) = - 11.5 + 5 \times 3$
Simplify the term,
$ \Rightarrow Cov\left( {x,y} \right) = 3.5$
Now, calculate the coefficient of correlation by the formula,
$\dfrac{{Cov\left( {x,y} \right)}}{{{\sigma _x}{\sigma _y}}}$
Substitute the values,
$ \Rightarrow $Coefficient of correlation $ = \dfrac{{3.5}}{{2 \times 4.58}}$
Multiply the terms in denominator,
$ \Rightarrow $Coefficient of correlation $ = \dfrac{{3.5}}{{9.16}}$
Convert the fraction into a decimal,
$\therefore $Coefficient of correlation $ = 0.38$
Hence, the coefficient of correlation is $0.38$.
Note: Correlation coefficients are used to measure the strength of the relationship between two variables. Pearson correlation is the one most commonly used in statistics. This measures the strength and direction of a linear relationship between two variables that we use in this question.
Complete Step by Step Solution:
The correlation coefficient is a statistical measure of the strength in the relationship between the relative movements of two variables. The values range between -1 and 1. If the calculated number is greater than 1 or less than -1 means that there is an error in the correlation measurement. A correlation of -1 shows a perfect negative correlation, while a correlation of 1 shows a perfect positive correlation. A correlation of 0 shows no linear relationship between the movement of the two variables.
To calculate the product-moment correlation, one must first determine the covariance of the two variables in question. Next, one must calculate each variable's standard deviation. The correlation coefficient is determined by dividing the covariance by the product of the two variables' standard deviations.
Now, calculate the standard deviation of $x$ by the formula,
${\sigma _x} = \sqrt {\dfrac{{\sum {{x^2}} }}{n} - {{\left( {\dfrac{{\sum x }}{n}} \right)}^2}} $
Substitute the values,
$ \Rightarrow {\sigma _x} = \sqrt {\dfrac{{290}}{{10}} - {{\left( {\dfrac{{50}}{{10}}} \right)}^2}} $
Cancel out the common factors,
$ \Rightarrow {\sigma _x} = \sqrt {29 - {{\left( 5 \right)}^2}} $
Square the term and subtract from 29,
$ \Rightarrow {\sigma _x} = \sqrt 4 $
So, the standard deviation of $x$ is,
$\therefore {\sigma _x} = 2$
Now, calculate the standard deviation of $y$ by the formula,
${\sigma _y} = \sqrt {\dfrac{{\sum {{y^2}} }}{n} - {{\left( {\dfrac{{\sum y }}{n}} \right)}^2}} $
Substitute the values,
$ \Rightarrow {\sigma _y} = \sqrt {\dfrac{{300}}{{10}} - {{\left( {\dfrac{{ - 30}}{{10}}} \right)}^2}} $
Cancel out the common factors,
$ \Rightarrow {\sigma _y} = \sqrt {30 - {{\left( { - 3} \right)}^2}} $
Square the term and subtract from 30,
$ \Rightarrow {\sigma _y} = \sqrt {21} $
So, the standard deviation of $y$ is,
$\therefore {\sigma _y} = 4.58$
Now calculate the covariance by the formula,
$Cov\left( {x,y} \right) = \dfrac{{\sum {xy} }}{n} - \dfrac{{\sum x }}{n} \cdot \dfrac{{\sum y }}{n}$
Substitute the values,
$ \Rightarrow Cov\left( {x,y} \right) = \dfrac{{ - 115}}{{10}} - \dfrac{{50}}{{10}} \cdot \dfrac{{ - 30}}{{10}}$
Cancel out the common factors,
$ \Rightarrow Cov\left( {x,y} \right) = - 11.5 + 5 \times 3$
Simplify the term,
$ \Rightarrow Cov\left( {x,y} \right) = 3.5$
Now, calculate the coefficient of correlation by the formula,
$\dfrac{{Cov\left( {x,y} \right)}}{{{\sigma _x}{\sigma _y}}}$
Substitute the values,
$ \Rightarrow $Coefficient of correlation $ = \dfrac{{3.5}}{{2 \times 4.58}}$
Multiply the terms in denominator,
$ \Rightarrow $Coefficient of correlation $ = \dfrac{{3.5}}{{9.16}}$
Convert the fraction into a decimal,
$\therefore $Coefficient of correlation $ = 0.38$
Hence, the coefficient of correlation is $0.38$.
Note: Correlation coefficients are used to measure the strength of the relationship between two variables. Pearson correlation is the one most commonly used in statistics. This measures the strength and direction of a linear relationship between two variables that we use in this question.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
