
If \[msin(\alpha + \beta)\ = \cos(\alpha - \beta)\] then \[\dfrac{1}{1 – msin2 \alpha}\ + \dfrac{1}{1 – msin2 \beta}\ = \dfrac{2}{1 – m^{2}}\]
Answer
497.4k+ views
Hint: In this question, given that \[{msin}\left( \alpha + \beta \right) = \cos\left( \alpha - \beta \right)\] .Then we have to prove \[\dfrac{1}{1 – msin2 \alpha}\ \ + \dfrac{1}{1 – msin2 \beta}{\ \ }\] is equal to \[\dfrac{2}{1 – m^{2}}\] . First we can consider the given as \[x\] . Then we can expand the right side of the expression which was given to prove to get the left side of the expression. With the use of trigonometric identities we can prove it.
Formula used:
1. \[sin2A + sin2B = 2\sin\left( A + B \right)\cos\left( A – B \right)\]
2. \[sin2Asin2B = \dfrac{\ 1}{2}\cos 2\left( a – b \right) - \cos 2\left( a + b \right)\]
3. \[cos2A = 2{cos}{A – 1}\]
Complete answer: Given,
\[msin(\alpha + \beta)\ = cos(\alpha - \beta)\]
Let us consider the given
\[{msin}\left( \alpha + \beta \right) = \cos\left( \alpha - \beta \right) = x\]
Now we can consider the right hand side of the expression,
⇒ \[\dfrac{1}{1 – msin2\alpha} + \dfrac{1}{1 – msin2\beta} \]
By cross multiplying,
We get,
⇒ \[\dfrac{\left( 1 – msin2 \beta \right) + \ \left( 1 – msin2 \alpha \right)}{\left( 1 – msin2\alpha \right)\left( 1 – msin2\beta \right)}\]
By simplifying,
We get,
⇒ \[\dfrac{2 – msin2\beta + msin2\alpha}{1 – m\left( sin2\alpha + sin2\beta \right) + m^{2}(sin2\alpha sin2\beta)}\]
By taking m as common in the numerator,
We get,
\[\dfrac{2 – m(sin2\beta + sin2\alpha)}{1 – m\left( sin2\alpha + sin2\beta \right) + m^{2}(sin2\alpha sin2\beta)}\]
We know that
\[sin2A + sin2B = 2\sin\left( A + B \right)\cos\left( A – B \right)\]
From this we can rewrite the expression as
⇒ \[\dfrac{2 – 2m\left( \sin\left( \alpha + \beta \right)\cos\left( \alpha - \beta \right) \right)}{1 – 2m\left( \sin\left( \alpha + \beta \right)\cos\left( \alpha - \beta \right) \right) + m^{2}\left( sin2\alpha sin2\beta \right)}\]
As per the given, we can write \[cos(\alpha - \beta)\] in the place of \[msin(\alpha + \beta)\]
⇒ \[\dfrac{2 - \left( 2\cos\left( \alpha - \beta \right)\cos\left( \alpha - \beta \right) \right)}{1 – 2\cos(\alpha - \beta)\cos(\alpha - \beta) + {m}^{2}(sin2\alpha sin2\beta)}\]
Now we have already consider,
\[{msin}\left( \alpha + \beta \right) = \cos\left( \alpha - \beta \right) = x\]
We get,
⇒ \[\dfrac{\left( 2 – 2\left( x \right)\left( x \right) \right)}{1 – 2\left( x \right)\left( x \right) + m^{2}\left( sin2\alpha sin2\beta \right)}\]
By multiplying,
We get,
⇒ \[\dfrac{2 – 2x^{2}}{1 – {2x}^{2} + m^{2}\left( sin2\alpha sin2\beta \right)}\]
Now we can use the fact that
\[sin2Asin2B = \dfrac{\ 1}{2}\cos 2(a – b) - \cos 2(a + b)\]
We get,
⇒ \[\dfrac{2 – 2x^{2}}{1 – 2x^{2} + \dfrac{m^{2}}{2}cos2\left( \alpha - \beta \right) – cos2\left( \alpha + \beta \right)}\]
We also know that,
\[cos2A = 2{cos}{A – 1}\]
\[cos^{2}A = 1 - {cos}A\]
By using this facts,
We get,
⇒ \[\dfrac{2 – 2x^{2}}{1 – 2x^{2} + \dfrac{m^{2}}{2}\ 2cos^{2}\left( \alpha - \beta \right) + sin^{2}\left( \alpha + \beta \right) – 1}\] •••(1)
In the question, given that
\[{msin}\left( \alpha + \beta \right) = \cos\left( \alpha - \beta \right)\]
And we have considered this as \[x\] that is \[{msin}\left( \alpha + \beta \right) = x\] and \[cos(\alpha - \beta)\ = x\]
On squaring both,
We get,
\[m^{2}\sin^{2}\left( \alpha + \beta \right) = x^{2}\]
We also write this as
\[sin^{2}\left( \alpha + \beta \right) = \dfrac{x^{2}}{m^{2}}\]
Also ,
\[cos^{2}\left( \alpha - \beta \right) = x^{2}\]
Now we can substitute this in (1),
⇒ \[\dfrac{2 – 2x^{2}}{1 – 2x^{2} + m^{2}\left( x^{2} + \dfrac{x^{2}}{m^{2}} – 1 \right)}\]
By taking \[2\] common from the numerator,
We get,
⇒ \[\dfrac{2\left( 1 – x^{2} \right)}{1 – x^{2} + m^{2}\left( x^{2} – 1 \right)}\]
We can take \[\left( 1 – x^{2} \right)\] as common from the denominator,
We get,
\[\dfrac{2\left( 1 – x^{2} \right)}{\left( 1 – x^{2} \right)\left( 1 – m^{2} \right)}\]
By simplifying,
We get,
⇒ \[\dfrac{2}{\left( 1 – m^{2} \right)}\]
Hence we got the left hand side of the expression.
Thus
\[\dfrac{1}{1 – msin2\alpha}\ + \dfrac{1}{1 – msin2\beta}\ = \dfrac{2}{1 – m^{2}}\]
Hence proved.
Final answer :
\[\dfrac{1}{1 – msin2\alpha}\ + \dfrac{1}{1 – msin2\beta}\ = \dfrac{2}{1 – m^{2}}\]
Note:
The concept used to prove the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the substitution rule with the use of trigonometric functions.
Formula used:
1. \[sin2A + sin2B = 2\sin\left( A + B \right)\cos\left( A – B \right)\]
2. \[sin2Asin2B = \dfrac{\ 1}{2}\cos 2\left( a – b \right) - \cos 2\left( a + b \right)\]
3. \[cos2A = 2{cos}{A – 1}\]
Complete answer: Given,
\[msin(\alpha + \beta)\ = cos(\alpha - \beta)\]
Let us consider the given
\[{msin}\left( \alpha + \beta \right) = \cos\left( \alpha - \beta \right) = x\]
Now we can consider the right hand side of the expression,
⇒ \[\dfrac{1}{1 – msin2\alpha} + \dfrac{1}{1 – msin2\beta} \]
By cross multiplying,
We get,
⇒ \[\dfrac{\left( 1 – msin2 \beta \right) + \ \left( 1 – msin2 \alpha \right)}{\left( 1 – msin2\alpha \right)\left( 1 – msin2\beta \right)}\]
By simplifying,
We get,
⇒ \[\dfrac{2 – msin2\beta + msin2\alpha}{1 – m\left( sin2\alpha + sin2\beta \right) + m^{2}(sin2\alpha sin2\beta)}\]
By taking m as common in the numerator,
We get,
\[\dfrac{2 – m(sin2\beta + sin2\alpha)}{1 – m\left( sin2\alpha + sin2\beta \right) + m^{2}(sin2\alpha sin2\beta)}\]
We know that
\[sin2A + sin2B = 2\sin\left( A + B \right)\cos\left( A – B \right)\]
From this we can rewrite the expression as
⇒ \[\dfrac{2 – 2m\left( \sin\left( \alpha + \beta \right)\cos\left( \alpha - \beta \right) \right)}{1 – 2m\left( \sin\left( \alpha + \beta \right)\cos\left( \alpha - \beta \right) \right) + m^{2}\left( sin2\alpha sin2\beta \right)}\]
As per the given, we can write \[cos(\alpha - \beta)\] in the place of \[msin(\alpha + \beta)\]
⇒ \[\dfrac{2 - \left( 2\cos\left( \alpha - \beta \right)\cos\left( \alpha - \beta \right) \right)}{1 – 2\cos(\alpha - \beta)\cos(\alpha - \beta) + {m}^{2}(sin2\alpha sin2\beta)}\]
Now we have already consider,
\[{msin}\left( \alpha + \beta \right) = \cos\left( \alpha - \beta \right) = x\]
We get,
⇒ \[\dfrac{\left( 2 – 2\left( x \right)\left( x \right) \right)}{1 – 2\left( x \right)\left( x \right) + m^{2}\left( sin2\alpha sin2\beta \right)}\]
By multiplying,
We get,
⇒ \[\dfrac{2 – 2x^{2}}{1 – {2x}^{2} + m^{2}\left( sin2\alpha sin2\beta \right)}\]
Now we can use the fact that
\[sin2Asin2B = \dfrac{\ 1}{2}\cos 2(a – b) - \cos 2(a + b)\]
We get,
⇒ \[\dfrac{2 – 2x^{2}}{1 – 2x^{2} + \dfrac{m^{2}}{2}cos2\left( \alpha - \beta \right) – cos2\left( \alpha + \beta \right)}\]
We also know that,
\[cos2A = 2{cos}{A – 1}\]
\[cos^{2}A = 1 - {cos}A\]
By using this facts,
We get,
⇒ \[\dfrac{2 – 2x^{2}}{1 – 2x^{2} + \dfrac{m^{2}}{2}\ 2cos^{2}\left( \alpha - \beta \right) + sin^{2}\left( \alpha + \beta \right) – 1}\] •••(1)
In the question, given that
\[{msin}\left( \alpha + \beta \right) = \cos\left( \alpha - \beta \right)\]
And we have considered this as \[x\] that is \[{msin}\left( \alpha + \beta \right) = x\] and \[cos(\alpha - \beta)\ = x\]
On squaring both,
We get,
\[m^{2}\sin^{2}\left( \alpha + \beta \right) = x^{2}\]
We also write this as
\[sin^{2}\left( \alpha + \beta \right) = \dfrac{x^{2}}{m^{2}}\]
Also ,
\[cos^{2}\left( \alpha - \beta \right) = x^{2}\]
Now we can substitute this in (1),
⇒ \[\dfrac{2 – 2x^{2}}{1 – 2x^{2} + m^{2}\left( x^{2} + \dfrac{x^{2}}{m^{2}} – 1 \right)}\]
By taking \[2\] common from the numerator,
We get,
⇒ \[\dfrac{2\left( 1 – x^{2} \right)}{1 – x^{2} + m^{2}\left( x^{2} – 1 \right)}\]
We can take \[\left( 1 – x^{2} \right)\] as common from the denominator,
We get,
\[\dfrac{2\left( 1 – x^{2} \right)}{\left( 1 – x^{2} \right)\left( 1 – m^{2} \right)}\]
By simplifying,
We get,
⇒ \[\dfrac{2}{\left( 1 – m^{2} \right)}\]
Hence we got the left hand side of the expression.
Thus
\[\dfrac{1}{1 – msin2\alpha}\ + \dfrac{1}{1 – msin2\beta}\ = \dfrac{2}{1 – m^{2}}\]
Hence proved.
Final answer :
\[\dfrac{1}{1 – msin2\alpha}\ + \dfrac{1}{1 – msin2\beta}\ = \dfrac{2}{1 – m^{2}}\]
Note:
The concept used to prove the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the substitution rule with the use of trigonometric functions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

