
If $ m{\sin ^2}A = {\cos ^2}\left( {A - B} \right) + {\cos ^2}B - 2\cos \left( {A - B} \right)\cos A\cos B $ . Find m.
Answer
580.8k+ views
Hint: In this question, we will use the trigonometric identity $ \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B $ and square identity $ {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab $ to simplify the expression given LHS. We will also use the formula $ \left( {{{\cos }^2}A + {{\sin }^2}A} \right) = 1 $ to get the final simplified expression. After this, we compare the RHS and LHS to get the value of m.
Complete step-by-step answer:
Given:- $ m{\sin ^2}A = {\cos ^2}\left( {A - B} \right) + {\cos ^2}B - 2\cos \left( {A - B} \right)\cos A\cos B $
We know that
$ \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B $ and also :
$ {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab $ ----------- (1)
Applying this formula on RHS we get,
$ {\left( {\cos A\cos B + \sin A\sin B} \right)^2} + {\cos ^2}B - 2\left( {\cos A\cos B + \sin A\sin B} \right)\cos A\cos B $
On expanding the terms using identity given by equation 1, we get:
$ = {\cos ^2}A{\cos ^2}B + {\sin ^2}A{\sin ^2}B + 2\cos A\cos B\sin A\sin B + {\cos ^2}B - 2{\cos ^2}A{\cos ^2}B - 2\sin A\sin B\cos A\cos B $
On cancelling the two equal terms with opposite sign, we have:
$ = {\cos ^2}A{\cos ^2}B + {\sin ^2}A{\sin ^2}B - 2{\cos ^2}A{\cos ^2}B + {\cos ^2}B $
$ = {\sin ^2}A{\sin ^2}B - {\cos ^2}A{\cos ^2}B + {\cos ^2}B $
On rearranging the terms, we have:
$ = {\cos ^2}B - {\cos ^2}A{\cos ^2}B + {\sin ^2}A{\sin ^2}B $
On taking out the $ {\operatorname{Cos} ^2}B $ as common, we get:
$ = {\cos ^2}B\left( {1 - {{\cos }^2}A} \right) + {\sin ^2}A{\sin ^2}B $
Now, we know that
$ \left( {{{\cos }^2}A + {{\sin }^2}A} \right) = 1 $ -------(2)
$ \Rightarrow {\sin ^2}A = 1 - {\cos ^2}A $ ---------- (3)
Using equation 3, the above expression can be written as:
$ = {\cos ^2}B{\sin ^2}A + {\sin ^2}A{\sin ^2}B $
Now, on taking out the $ {\operatorname{Sin} ^2}A $ as common, we get:
$ = {\sin ^2}A\left( {{{\cos }^2}B + {{\sin }^2}B} \right) $
Using the identity given by equation 2, we have:
$ = {\sin ^2}A\left( 1 \right) $
\[ = {\sin ^2}A\]
Since on comparing this simplified value of RHS with LHS, we get the value of m is 1
i.e. $ m{\sin ^3}A = {\sin ^3}A $
Thus m = 1
Note: In this type of question we just need to solve one side and then compare it to the other side. In case if the other side is also uncomplicated form then firstly simplify it then compare to get the value. Before solving these types of questions, you should remember the important trigonometric formulas and identities like \[Sin\left( {A \pm B} \right){\text{ }} = {\text{ }}SinACosB \pm CosASinB\] .
Complete step-by-step answer:
Given:- $ m{\sin ^2}A = {\cos ^2}\left( {A - B} \right) + {\cos ^2}B - 2\cos \left( {A - B} \right)\cos A\cos B $
We know that
$ \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B $ and also :
$ {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab $ ----------- (1)
Applying this formula on RHS we get,
$ {\left( {\cos A\cos B + \sin A\sin B} \right)^2} + {\cos ^2}B - 2\left( {\cos A\cos B + \sin A\sin B} \right)\cos A\cos B $
On expanding the terms using identity given by equation 1, we get:
$ = {\cos ^2}A{\cos ^2}B + {\sin ^2}A{\sin ^2}B + 2\cos A\cos B\sin A\sin B + {\cos ^2}B - 2{\cos ^2}A{\cos ^2}B - 2\sin A\sin B\cos A\cos B $
On cancelling the two equal terms with opposite sign, we have:
$ = {\cos ^2}A{\cos ^2}B + {\sin ^2}A{\sin ^2}B - 2{\cos ^2}A{\cos ^2}B + {\cos ^2}B $
$ = {\sin ^2}A{\sin ^2}B - {\cos ^2}A{\cos ^2}B + {\cos ^2}B $
On rearranging the terms, we have:
$ = {\cos ^2}B - {\cos ^2}A{\cos ^2}B + {\sin ^2}A{\sin ^2}B $
On taking out the $ {\operatorname{Cos} ^2}B $ as common, we get:
$ = {\cos ^2}B\left( {1 - {{\cos }^2}A} \right) + {\sin ^2}A{\sin ^2}B $
Now, we know that
$ \left( {{{\cos }^2}A + {{\sin }^2}A} \right) = 1 $ -------(2)
$ \Rightarrow {\sin ^2}A = 1 - {\cos ^2}A $ ---------- (3)
Using equation 3, the above expression can be written as:
$ = {\cos ^2}B{\sin ^2}A + {\sin ^2}A{\sin ^2}B $
Now, on taking out the $ {\operatorname{Sin} ^2}A $ as common, we get:
$ = {\sin ^2}A\left( {{{\cos }^2}B + {{\sin }^2}B} \right) $
Using the identity given by equation 2, we have:
$ = {\sin ^2}A\left( 1 \right) $
\[ = {\sin ^2}A\]
Since on comparing this simplified value of RHS with LHS, we get the value of m is 1
i.e. $ m{\sin ^3}A = {\sin ^3}A $
Thus m = 1
Note: In this type of question we just need to solve one side and then compare it to the other side. In case if the other side is also uncomplicated form then firstly simplify it then compare to get the value. Before solving these types of questions, you should remember the important trigonometric formulas and identities like \[Sin\left( {A \pm B} \right){\text{ }} = {\text{ }}SinACosB \pm CosASinB\] .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

