
If , $\mathrm x-\log48+3\log2=\frac13\log125-\log3\;\mathrm{and}\;\mathrm x=\log_{\mathrm m}20$, then the value of m will be-
(A). 6
(B). 5
(C). 10
(D). 20
Answer
615k+ views
Hint: In this question, the properties of logarithmic functions will be used. Some of the properties are-
$\mathrm{bloga}=\mathrm{loga}^{\mathrm b}.....\left(1\right)\\\log_{\mathrm m}\mathrm a=\dfrac{\mathrm{loga}}{\mathrm{logm}}.....\left(2\right)\\\mathrm{logab}=\mathrm{loga}+\mathrm{logb}.....\left(3\right)\\\log_{\mathrm a}\mathrm b=\mathrm c\;\mathrm{is}\;\mathrm{the}\;\mathrm{same}\;\mathrm{as}\;\mathrm a^{\mathrm c}=\mathrm b....\left(4\right)$
Also, the logarithm base is considered to be 10.
Complete step-by-step answer:
Using the above mentioned properties, we can easily solve the logarithmic equation-
$\mathrm x-\log48+3\log2=\dfrac13\log125-\log3\\\mathrm x-\log\left(2^4\times3\right)+3\log2=\log125^\frac13-\log3\\\mathrm{Using}\;\mathrm{properties}\;\left(1\right)\;\mathrm{and}\left(3\right),\\\mathrm x-4\log2-\log3+3\log2=\log5-\log3\\\mathrm x=\log5+\log2=\log10\\\mathrm{But}\;\mathrm x=\log_{\mathrm m}20\;\mathrm{and}\;\log10=1,\\\log_{\mathrm m}20=1\\\mathrm{Using}\;\mathrm{property}\;\left(4\right),\\\mathrm m^1=20\\\mathrm m=20$
Hence, the correct answer is D. 20
Note: In such problems first simplify the larger logarithms into log of prime numbers. This helps in solving the value of variables easily. The base of the log in the question is 10, and it can be manipulated according to the requirement of the question.
$\mathrm{bloga}=\mathrm{loga}^{\mathrm b}.....\left(1\right)\\\log_{\mathrm m}\mathrm a=\dfrac{\mathrm{loga}}{\mathrm{logm}}.....\left(2\right)\\\mathrm{logab}=\mathrm{loga}+\mathrm{logb}.....\left(3\right)\\\log_{\mathrm a}\mathrm b=\mathrm c\;\mathrm{is}\;\mathrm{the}\;\mathrm{same}\;\mathrm{as}\;\mathrm a^{\mathrm c}=\mathrm b....\left(4\right)$
Also, the logarithm base is considered to be 10.
Complete step-by-step answer:
Using the above mentioned properties, we can easily solve the logarithmic equation-
$\mathrm x-\log48+3\log2=\dfrac13\log125-\log3\\\mathrm x-\log\left(2^4\times3\right)+3\log2=\log125^\frac13-\log3\\\mathrm{Using}\;\mathrm{properties}\;\left(1\right)\;\mathrm{and}\left(3\right),\\\mathrm x-4\log2-\log3+3\log2=\log5-\log3\\\mathrm x=\log5+\log2=\log10\\\mathrm{But}\;\mathrm x=\log_{\mathrm m}20\;\mathrm{and}\;\log10=1,\\\log_{\mathrm m}20=1\\\mathrm{Using}\;\mathrm{property}\;\left(4\right),\\\mathrm m^1=20\\\mathrm m=20$
Hence, the correct answer is D. 20
Note: In such problems first simplify the larger logarithms into log of prime numbers. This helps in solving the value of variables easily. The base of the log in the question is 10, and it can be manipulated according to the requirement of the question.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

