
If $ \mathop {\lim }\limits_{x \to \dfrac{x}{2}} \dfrac{{\cot x - \cos x}}{{{{(\pi - 2x)}^3}}} $ is equal to
A. $ \dfrac{1}{{24}} $
B. $ \dfrac{1}{{16}} $
C. $ \dfrac{1}{{81}} $
D. $ \dfrac{1}{4} $
Answer
567.3k+ views
Hint: Here, we will suppose the given angle and substitute. Replace the basic trigonometric values wherever applicable. Change accordingly the given limit with respect to the assumed substitution. Use All STC rules.
Complete step-by-step answer:
Take the given function -
$ \mathop {\lim }\limits_{x \to \dfrac{x}{2}} \dfrac{{\cot x - \cos x}}{{{{(\pi - 2x)}^3}}} $
Let us consider, $ x = \dfrac{\pi }{2} - h $
Here, the limit also changes to zero, where “h” tends to zero.
The given equation becomes –
$ \mathop {\lim }\limits_{h \to 0} \dfrac{{\cot (\dfrac{\pi }{2} - h) - \cos (\dfrac{\pi }{2} - h)}}{{{{(\pi - 2(\dfrac{\pi }{2} - h))}^3}}} $
Apply All STC rule –
Replace,
\[
\tanh = \cot [(\dfrac{\pi }{2}) - h] \\
\cos x = \cos [(\dfrac{\pi }{2}) - h] \\
\]
Like terms cancel each other from the numerator and denominator. Like terms of same value and opposite signs cancel each other.
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\tanh - \sinh }}{{{{(2h)}^3}}} $
Convert “tangent” into sine by cosine.
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sinh }}{{\cosh }} - \sinh }}{{8{h^3}}} $
Take “sinh” common from the numerator –
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh \left( {\dfrac{1}{{\cosh }} - 1} \right)}}{{8{h^3}}} $
Take L.C.M. (least common multiple) in the above equation –
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh \left( {\dfrac{{1 - \cosh }}{{\cosh }}} \right)}}{{8{h^3}}} $
Take “cosh” common from the denominator.
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sinh }}{{\cosh }}\left( {1 - \cosh } \right)}}{{8{h^3}}} $
Replace the formula in the above equation.
$ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},{\text{ 1 - cos}}\theta {\text{ = 2si}}{{\text{n}}^2}\dfrac{\theta }{2} $
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\tanh \left( {2{{\sin }^2}(\dfrac{h}{2})} \right)}}{{8{h^3}}} $
Split the power of “h” in the denominator –
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\tanh }}{h}\dfrac{{\left( {2{{\sin }^2}(\dfrac{h}{2})} \right)}}{{8{h^2}}} $
Take common factors from the denominator and the numerator and simplify.
We know that, $ \mathop {\lim }\limits_{h \to 0} \dfrac{{\tanh }}{h} = 1 $
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\sin }^2}(\dfrac{h}{2})} \right)}}{{4{h^2}}} $
Multiply and divide the numerator with
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\sin }^2}(\dfrac{h}{2})} \right)}}{{4{{\left( {\dfrac{h}{2}} \right)}^2} \cdot 4}} $
Also, $ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\sin }^2}(\dfrac{h}{2})} \right)}}{{{{\left( {\dfrac{h}{2}} \right)}^2}}} = 1 $ , Place value in the above equation.
$ \Rightarrow \dfrac{1}{{4 \cdot 4}} = \dfrac{1}{{16}} $ is the required value.
So, the correct answer is “Option B”.
Note: Do not forget to change the limit with respect to the given limit and substitution. Remember the basic trigonometric relations and correlations along with the formulas to simplify and get the resultant value. Remember the All STC rule, it is also known as the ASTC rule in geometry. It states that all the trigonometric ratios in the first quadrant ($ 0^\circ \;{\text{to 90}}^\circ $ ) are positive, sine and cosec are positive in the second quadrant ( $ 90^\circ {\text{ to 180}}^\circ $ ), tan and cot are positive in the third quadrant ( $ 180^\circ \;{\text{to 270}}^\circ $ ) and sin and cosec are positive in the fourth quadrant ( $ 270^\circ {\text{ to 360}}^\circ $ ).
Complete step-by-step answer:
Take the given function -
$ \mathop {\lim }\limits_{x \to \dfrac{x}{2}} \dfrac{{\cot x - \cos x}}{{{{(\pi - 2x)}^3}}} $
Let us consider, $ x = \dfrac{\pi }{2} - h $
Here, the limit also changes to zero, where “h” tends to zero.
The given equation becomes –
$ \mathop {\lim }\limits_{h \to 0} \dfrac{{\cot (\dfrac{\pi }{2} - h) - \cos (\dfrac{\pi }{2} - h)}}{{{{(\pi - 2(\dfrac{\pi }{2} - h))}^3}}} $
Apply All STC rule –
Replace,
\[
\tanh = \cot [(\dfrac{\pi }{2}) - h] \\
\cos x = \cos [(\dfrac{\pi }{2}) - h] \\
\]
Like terms cancel each other from the numerator and denominator. Like terms of same value and opposite signs cancel each other.
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\tanh - \sinh }}{{{{(2h)}^3}}} $
Convert “tangent” into sine by cosine.
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sinh }}{{\cosh }} - \sinh }}{{8{h^3}}} $
Take “sinh” common from the numerator –
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh \left( {\dfrac{1}{{\cosh }} - 1} \right)}}{{8{h^3}}} $
Take L.C.M. (least common multiple) in the above equation –
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh \left( {\dfrac{{1 - \cosh }}{{\cosh }}} \right)}}{{8{h^3}}} $
Take “cosh” common from the denominator.
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sinh }}{{\cosh }}\left( {1 - \cosh } \right)}}{{8{h^3}}} $
Replace the formula in the above equation.
$ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},{\text{ 1 - cos}}\theta {\text{ = 2si}}{{\text{n}}^2}\dfrac{\theta }{2} $
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\tanh \left( {2{{\sin }^2}(\dfrac{h}{2})} \right)}}{{8{h^3}}} $
Split the power of “h” in the denominator –
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\tanh }}{h}\dfrac{{\left( {2{{\sin }^2}(\dfrac{h}{2})} \right)}}{{8{h^2}}} $
Take common factors from the denominator and the numerator and simplify.
We know that, $ \mathop {\lim }\limits_{h \to 0} \dfrac{{\tanh }}{h} = 1 $
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\sin }^2}(\dfrac{h}{2})} \right)}}{{4{h^2}}} $
Multiply and divide the numerator with
$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\sin }^2}(\dfrac{h}{2})} \right)}}{{4{{\left( {\dfrac{h}{2}} \right)}^2} \cdot 4}} $
Also, $ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\sin }^2}(\dfrac{h}{2})} \right)}}{{{{\left( {\dfrac{h}{2}} \right)}^2}}} = 1 $ , Place value in the above equation.
$ \Rightarrow \dfrac{1}{{4 \cdot 4}} = \dfrac{1}{{16}} $ is the required value.
So, the correct answer is “Option B”.
Note: Do not forget to change the limit with respect to the given limit and substitution. Remember the basic trigonometric relations and correlations along with the formulas to simplify and get the resultant value. Remember the All STC rule, it is also known as the ASTC rule in geometry. It states that all the trigonometric ratios in the first quadrant ($ 0^\circ \;{\text{to 90}}^\circ $ ) are positive, sine and cosec are positive in the second quadrant ( $ 90^\circ {\text{ to 180}}^\circ $ ), tan and cot are positive in the third quadrant ( $ 180^\circ \;{\text{to 270}}^\circ $ ) and sin and cosec are positive in the fourth quadrant ( $ 270^\circ {\text{ to 360}}^\circ $ ).
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

