
If $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right)$ exist, find the values of $a,\;b$. How can I solve this?
Answer
533.1k+ views
Hint: We can calculate that for $\mathop {\lim }\limits_{x \to 0} $ the given expression becomes $\dfrac{0}{0}$. Since this is an indeterminate form, we have to simplify the expression such that we can find a finite limit of the expression for $x \to 0$. We can use rationalizing of the denominator and then using binomial expansion for the term $\dfrac{1}{{\sqrt {1 + x} }}$ to simplify the expression.
Complete step by step solution:
We have been given that the limit $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right)$ exists. The value of this limit is not given. If we put $x = 0$ in the expression we will get,
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \left( {\dfrac{1}{0}} \right)\left( {\dfrac{1}{{\sqrt {1 + 0} }} - \dfrac{{1 + 0}}{{1 + 0}}} \right) = \left( {\dfrac{1}{0}} \right)\left( {1 - 1} \right) = \dfrac{0}{0}$
Since $\dfrac{0}{0}$ is an indeterminate form, we have to simplify the expression to get a finite value of the limit.
First we rationalize the term $\dfrac{1}{{\sqrt {1 + x} }}$ by multiplying by $\sqrt {1 + x} $ in the numerator and the denominator.
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\left( {\dfrac{1}{{\sqrt {1 + x} }} \times \dfrac{{\sqrt {1 + x} }}{{\sqrt {1 + x} }}} \right) - \dfrac{{1 + ax}}{{1 + bx}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\sqrt {1 + x} }}{{1 + x}} - \dfrac{{1 + ax}}{{1 + bx}}} \right) \\
\]
We can simplify further as,
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\sqrt {1 + x} }}{{1 + x}} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\left( {1 + bx} \right)\sqrt {1 + x} - \left( {1 + ax} \right)\left( {1 + x} \right)}}{{\left( {1 + x} \right)\left( {1 + bx} \right)}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + bx} \right){{\left( {1 + x} \right)}^{\dfrac{1}{2}}} - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \;
\]
Now we can use the binomial expansion formula to expand ${\left( {1 + x} \right)^{\dfrac{1}{2}}}$. The binomial formula is given as,
${\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + \;...\;\infty $
Thus,
$
{\left( {1 + x} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}x + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right)}}{{2!}}{x^2} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right)\left( {\dfrac{1}{2} - 2} \right)}}{{3!}}{x^3} + \;...\;\infty \\
\Rightarrow {\left( {1 + x} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ... \;
$
Using this value in the limit we get,
\[
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + bx} \right)\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right) - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right) + \left( {bx + \dfrac{{b{x^2}}}{2} - \dfrac{{b{x^3}}}{8} + \dfrac{{b{x^4}}}{{16}} + ...} \right) - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\dfrac{{\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right)}}{{{x^3}}} + \dfrac{{\left( {bx + \dfrac{{b{x^2}}}{2} - \dfrac{{b{x^3}}}{8} + \dfrac{{b{x^4}}}{{16}} + ...} \right)}}{{{x^3}}} - \dfrac{{\left( {ax + x + a{x^2}} \right)}}{{{x^3}}}}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {\dfrac{1}{{{x^3}}} + \dfrac{1}{{2{x^2}}} - \dfrac{1}{{8x}} + \dfrac{1}{{16}} + ...} \right) + \left( {\dfrac{b}{{{x^2}}} + \dfrac{b}{{2x}} - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right) - \left( {\dfrac{1}{{{x^3}}} + \dfrac{a}{{{x^2}}} + \dfrac{1}{{{x^2}}} + \dfrac{a}{x}} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
\]
We can further simplify this as,
\[
l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {\dfrac{1}{{{x^3}}} + \dfrac{1}{{2{x^2}}} - \dfrac{1}{{8x}} + \dfrac{1}{{16}} + ...} \right) + \left( {\dfrac{b}{{{x^2}}} + \dfrac{b}{{2x}} - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right) - \left( {\dfrac{1}{{{x^3}}} + \dfrac{a}{{{x^2}}} + \dfrac{1}{{{x^2}}} + \dfrac{a}{x}} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
\Rightarrow l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\dfrac{1}{{{x^2}}}\left( {\dfrac{1}{2} - a + b - 1} \right) + \dfrac{1}{x}\left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) + \left( {\dfrac{1}{{16}} + ... - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \;
\]
Now, in this simplified form if we put $x = 0$ we still get indeterminate terms in the numerator.
The coefficient of $\dfrac{1}{{{x^2}}}$ and $\dfrac{1}{x}$ has to be equal to zero for the limit to exist as a finite number.
Thus,
\[\left( {\dfrac{1}{2} - a + b - 1} \right) = 0\] and \[\left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) = 0\]
\[
\left( {\dfrac{1}{2} - a + b - 1} \right) = 0 \\
\Rightarrow b - a = \dfrac{1}{2} \;
\]
And,
\[
\left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) = 0 \\
\Rightarrow b - 2a = \dfrac{1}{4} \;
\]
We can solve this as,
\[
\left( {b - a} \right) - \left( {b - 2a} \right) = \dfrac{1}{2} - \dfrac{1}{4} \\
\Rightarrow a = \dfrac{1}{4} \;
\]
And,
\[
b - a = \dfrac{1}{2} \\
\Rightarrow b = \dfrac{1}{2} + a = \dfrac{1}{2} + \dfrac{1}{4} = \dfrac{3}{4} \\
\]
Hence the required value is \[a = \dfrac{1}{4}\] and \[b = \dfrac{3}{4}\] .
So, the correct answer is “ \[a = \dfrac{1}{4}\] and \[b = \dfrac{3}{4}\] ”.
Note: Since the limit that we were getting after putting $x = 0$ in the given expression was indeterminate, we simplified the expression such that the indeterminate form was eliminated. We can also use L’Hospital’s rule when the limit is in the indeterminate form.
Complete step by step solution:
We have been given that the limit $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right)$ exists. The value of this limit is not given. If we put $x = 0$ in the expression we will get,
$\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \left( {\dfrac{1}{0}} \right)\left( {\dfrac{1}{{\sqrt {1 + 0} }} - \dfrac{{1 + 0}}{{1 + 0}}} \right) = \left( {\dfrac{1}{0}} \right)\left( {1 - 1} \right) = \dfrac{0}{0}$
Since $\dfrac{0}{0}$ is an indeterminate form, we have to simplify the expression to get a finite value of the limit.
First we rationalize the term $\dfrac{1}{{\sqrt {1 + x} }}$ by multiplying by $\sqrt {1 + x} $ in the numerator and the denominator.
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{1}{{\sqrt {1 + x} }} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\left( {\dfrac{1}{{\sqrt {1 + x} }} \times \dfrac{{\sqrt {1 + x} }}{{\sqrt {1 + x} }}} \right) - \dfrac{{1 + ax}}{{1 + bx}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\sqrt {1 + x} }}{{1 + x}} - \dfrac{{1 + ax}}{{1 + bx}}} \right) \\
\]
We can simplify further as,
\[
\Rightarrow \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\sqrt {1 + x} }}{{1 + x}} - \dfrac{{1 + ax}}{{1 + bx}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^3}}}} \right)\left( {\dfrac{{\left( {1 + bx} \right)\sqrt {1 + x} - \left( {1 + ax} \right)\left( {1 + x} \right)}}{{\left( {1 + x} \right)\left( {1 + bx} \right)}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + bx} \right){{\left( {1 + x} \right)}^{\dfrac{1}{2}}} - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \;
\]
Now we can use the binomial expansion formula to expand ${\left( {1 + x} \right)^{\dfrac{1}{2}}}$. The binomial formula is given as,
${\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + \;...\;\infty $
Thus,
$
{\left( {1 + x} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}x + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right)}}{{2!}}{x^2} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right)\left( {\dfrac{1}{2} - 2} \right)}}{{3!}}{x^3} + \;...\;\infty \\
\Rightarrow {\left( {1 + x} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ... \;
$
Using this value in the limit we get,
\[
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + bx} \right)\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right) - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right) + \left( {bx + \dfrac{{b{x^2}}}{2} - \dfrac{{b{x^3}}}{8} + \dfrac{{b{x^4}}}{{16}} + ...} \right) - \left( {1 + ax + x + a{x^2}} \right)}}{{{x^3}\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\dfrac{{\left( {1 + \dfrac{x}{2} - \dfrac{{{x^2}}}{8} + \dfrac{{{x^3}}}{{16}} + ...} \right)}}{{{x^3}}} + \dfrac{{\left( {bx + \dfrac{{b{x^2}}}{2} - \dfrac{{b{x^3}}}{8} + \dfrac{{b{x^4}}}{{16}} + ...} \right)}}{{{x^3}}} - \dfrac{{\left( {ax + x + a{x^2}} \right)}}{{{x^3}}}}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {\dfrac{1}{{{x^3}}} + \dfrac{1}{{2{x^2}}} - \dfrac{1}{{8x}} + \dfrac{1}{{16}} + ...} \right) + \left( {\dfrac{b}{{{x^2}}} + \dfrac{b}{{2x}} - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right) - \left( {\dfrac{1}{{{x^3}}} + \dfrac{a}{{{x^2}}} + \dfrac{1}{{{x^2}}} + \dfrac{a}{x}} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
\]
We can further simplify this as,
\[
l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\left( {\dfrac{1}{{{x^3}}} + \dfrac{1}{{2{x^2}}} - \dfrac{1}{{8x}} + \dfrac{1}{{16}} + ...} \right) + \left( {\dfrac{b}{{{x^2}}} + \dfrac{b}{{2x}} - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right) - \left( {\dfrac{1}{{{x^3}}} + \dfrac{a}{{{x^2}}} + \dfrac{1}{{{x^2}}} + \dfrac{a}{x}} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \\
\Rightarrow l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\dfrac{1}{{{x^2}}}\left( {\dfrac{1}{2} - a + b - 1} \right) + \dfrac{1}{x}\left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) + \left( {\dfrac{1}{{16}} + ... - \dfrac{b}{8} + \dfrac{{bx}}{{16}} + ...} \right)}}{{\left( {1 + x + bx + b{x^2}} \right)}}} \right) \;
\]
Now, in this simplified form if we put $x = 0$ we still get indeterminate terms in the numerator.
The coefficient of $\dfrac{1}{{{x^2}}}$ and $\dfrac{1}{x}$ has to be equal to zero for the limit to exist as a finite number.
Thus,
\[\left( {\dfrac{1}{2} - a + b - 1} \right) = 0\] and \[\left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) = 0\]
\[
\left( {\dfrac{1}{2} - a + b - 1} \right) = 0 \\
\Rightarrow b - a = \dfrac{1}{2} \;
\]
And,
\[
\left( {\dfrac{b}{2} - \dfrac{1}{8} - a} \right) = 0 \\
\Rightarrow b - 2a = \dfrac{1}{4} \;
\]
We can solve this as,
\[
\left( {b - a} \right) - \left( {b - 2a} \right) = \dfrac{1}{2} - \dfrac{1}{4} \\
\Rightarrow a = \dfrac{1}{4} \;
\]
And,
\[
b - a = \dfrac{1}{2} \\
\Rightarrow b = \dfrac{1}{2} + a = \dfrac{1}{2} + \dfrac{1}{4} = \dfrac{3}{4} \\
\]
Hence the required value is \[a = \dfrac{1}{4}\] and \[b = \dfrac{3}{4}\] .
So, the correct answer is “ \[a = \dfrac{1}{4}\] and \[b = \dfrac{3}{4}\] ”.
Note: Since the limit that we were getting after putting $x = 0$ in the given expression was indeterminate, we simplified the expression such that the indeterminate form was eliminated. We can also use L’Hospital’s rule when the limit is in the indeterminate form.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

