
If $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times its ${{n}^{th}}$ term, then show that the ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero.
Answer
600.9k+ views
Hint: First of all, write the ${{m}^{th}}$ and the ${{n}^{th}}$ term of A.P. by using the formula, ${{a}_{n}}=a+\left( n-1 \right)d$. Now equate $n$ times of ${{n}^{th}}$ term to $m$ times the ${{m}^{th}}$ term. From here find the value of $a$ and substitute it in ${{\left( m+n \right)}^{th}}$ term to get the desired result.
Complete step-by-step answer:
We are given that if $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times its ${{n}^{th}}$ term, then we have to show that the ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero. Before proceeding with the question, let us see what an A.P. is. An A.P. or Arithmetic Progression is a sequence of numbers such that the difference of any two successive terms is constant. For example, the sequence of 2, 4, 6, 8 is an A.P. with the common difference of 2. We generally write the terms of A.P. as: $a,a+d,a+2d,a+3d\ldots $, where $a$ is the first term and $d$ is the common difference of A.P. Also, the ${{n}^{th}}$ term of A.P. is given by, ${{a}_{n}}=a+\left( n-1 \right)d$.
Now let us consider our question. We know that the ${{n}^{th}}$ term of A.P. is given by, ${{a}_{n}}=a+\left( n-1 \right)d\ldots \ldots \ldots \left( i \right)$.
So, by substituting $n=m$ in this equation, we get, ${{m}^{th}}$ term of A.P. as, $\left( {{a}_{m}} \right)=a+\left( m-1 \right)d$. By multiplying on both sides of the equation, we get,
$m$ times the ${{m}^{th}}$ term of an A.P. $\Rightarrow m{{a}_{m}}=m\left[ a+\left( m-1 \right)d \right]\ldots \ldots \ldots \left( ii \right)$
Also, by multiplying $n$ to both sides of equation (i), we get,
$n$ times the ${{n}^{th}}$ term of an A.P. $\Rightarrow n{{a}_{n}}=n\left[ a+\left( n-1 \right)d \right]\ldots \ldots \ldots \left( iii \right)$
We are given that $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times of the ${{n}^{th}}$ term. So, by equating equation (ii) and equation (iii), we get, $m\left[ a+\left( m-1 \right)d \right]=n\left[ a+\left( n-1 \right)d \right]$. Simplifying this equation, we get,
$\begin{align}
& ma+m\left( m-1 \right)d=na+n\left( n-1 \right)d \\
& \Rightarrow \left( ma-na \right)=n\left( n-1 \right)d-m\left( m-1 \right)d \\
& \Rightarrow a\left( m-n \right)=d\left[ n\left( n-1 \right)-m\left( m-1 \right) \right] \\
& \Rightarrow a\left( m-n \right)=d\left[ {{n}^{2}}-n-{{m}^{2}}+m \right] \\
\end{align}$
We can also write the above equation as,
$a\left( m-n \right)=d\left[ \left( m-n \right)-\left( {{m}^{2}}-{{n}^{2}} \right) \right]$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. By using this in the above equation, we get, $a\left( m-n \right)=d\left[ \left( m-n \right)-\left( m-n \right)\left( m+n \right) \right]$
By taking out $\left( m-n \right)$, the common term from RHS of the above equation, we get,
$a\left( m-n \right)=\left( m-n \right)d\left[ 1-\left( m+n \right) \right]$
By cancelling $\left( m-n \right)$ from both the sides, we get, $a=d\left[ 1-m-n \right]\ldots \ldots \ldots \left( iv \right)$. By substituting $n=m+n$ in equation (i), we get, ${{\left( m+n \right)}^{th}}$ term of the A.P. as ${{a}_{m+n}}=a+\left( m+n-1 \right)d$. By substituting the value of $a$ from equation (iv) in this equation, we get, ${{a}_{m+n}}=d\left[ 1-m-n \right]+\left( m+n-1 \right)d$. By simplifying, we get,
$\begin{align}
& {{a}_{m+n}}=d-dm-dn+dm+dn-d \\
& \Rightarrow {{a}_{m+n}}=0 \\
\end{align}$
Hence, we have proved that ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero.
Note: In this question, students must note that the value of $a$ and $d$ will remain constant as we are talking about the same A.P. throughout the question, while the value of the ${{n}^{th}}$ term will change according to the information provided in the question. Also, students can substitute $d=\dfrac{a}{1-\left( m+n \right)}$ in the equation for ${{m}^{th}}$ term to prove the desired answer, but it is advisable to take the numbers or the terms in whole number values instead of fractions to avoid any mistakes.
Complete step-by-step answer:
We are given that if $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times its ${{n}^{th}}$ term, then we have to show that the ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero. Before proceeding with the question, let us see what an A.P. is. An A.P. or Arithmetic Progression is a sequence of numbers such that the difference of any two successive terms is constant. For example, the sequence of 2, 4, 6, 8 is an A.P. with the common difference of 2. We generally write the terms of A.P. as: $a,a+d,a+2d,a+3d\ldots $, where $a$ is the first term and $d$ is the common difference of A.P. Also, the ${{n}^{th}}$ term of A.P. is given by, ${{a}_{n}}=a+\left( n-1 \right)d$.
Now let us consider our question. We know that the ${{n}^{th}}$ term of A.P. is given by, ${{a}_{n}}=a+\left( n-1 \right)d\ldots \ldots \ldots \left( i \right)$.
So, by substituting $n=m$ in this equation, we get, ${{m}^{th}}$ term of A.P. as, $\left( {{a}_{m}} \right)=a+\left( m-1 \right)d$. By multiplying on both sides of the equation, we get,
$m$ times the ${{m}^{th}}$ term of an A.P. $\Rightarrow m{{a}_{m}}=m\left[ a+\left( m-1 \right)d \right]\ldots \ldots \ldots \left( ii \right)$
Also, by multiplying $n$ to both sides of equation (i), we get,
$n$ times the ${{n}^{th}}$ term of an A.P. $\Rightarrow n{{a}_{n}}=n\left[ a+\left( n-1 \right)d \right]\ldots \ldots \ldots \left( iii \right)$
We are given that $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times of the ${{n}^{th}}$ term. So, by equating equation (ii) and equation (iii), we get, $m\left[ a+\left( m-1 \right)d \right]=n\left[ a+\left( n-1 \right)d \right]$. Simplifying this equation, we get,
$\begin{align}
& ma+m\left( m-1 \right)d=na+n\left( n-1 \right)d \\
& \Rightarrow \left( ma-na \right)=n\left( n-1 \right)d-m\left( m-1 \right)d \\
& \Rightarrow a\left( m-n \right)=d\left[ n\left( n-1 \right)-m\left( m-1 \right) \right] \\
& \Rightarrow a\left( m-n \right)=d\left[ {{n}^{2}}-n-{{m}^{2}}+m \right] \\
\end{align}$
We can also write the above equation as,
$a\left( m-n \right)=d\left[ \left( m-n \right)-\left( {{m}^{2}}-{{n}^{2}} \right) \right]$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. By using this in the above equation, we get, $a\left( m-n \right)=d\left[ \left( m-n \right)-\left( m-n \right)\left( m+n \right) \right]$
By taking out $\left( m-n \right)$, the common term from RHS of the above equation, we get,
$a\left( m-n \right)=\left( m-n \right)d\left[ 1-\left( m+n \right) \right]$
By cancelling $\left( m-n \right)$ from both the sides, we get, $a=d\left[ 1-m-n \right]\ldots \ldots \ldots \left( iv \right)$. By substituting $n=m+n$ in equation (i), we get, ${{\left( m+n \right)}^{th}}$ term of the A.P. as ${{a}_{m+n}}=a+\left( m+n-1 \right)d$. By substituting the value of $a$ from equation (iv) in this equation, we get, ${{a}_{m+n}}=d\left[ 1-m-n \right]+\left( m+n-1 \right)d$. By simplifying, we get,
$\begin{align}
& {{a}_{m+n}}=d-dm-dn+dm+dn-d \\
& \Rightarrow {{a}_{m+n}}=0 \\
\end{align}$
Hence, we have proved that ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero.
Note: In this question, students must note that the value of $a$ and $d$ will remain constant as we are talking about the same A.P. throughout the question, while the value of the ${{n}^{th}}$ term will change according to the information provided in the question. Also, students can substitute $d=\dfrac{a}{1-\left( m+n \right)}$ in the equation for ${{m}^{th}}$ term to prove the desired answer, but it is advisable to take the numbers or the terms in whole number values instead of fractions to avoid any mistakes.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

