
If $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times its ${{n}^{th}}$ term, then show that the ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero.
Answer
615.3k+ views
Hint: First of all, write the ${{m}^{th}}$ and the ${{n}^{th}}$ term of A.P. by using the formula, ${{a}_{n}}=a+\left( n-1 \right)d$. Now equate $n$ times of ${{n}^{th}}$ term to $m$ times the ${{m}^{th}}$ term. From here find the value of $a$ and substitute it in ${{\left( m+n \right)}^{th}}$ term to get the desired result.
Complete step-by-step answer:
We are given that if $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times its ${{n}^{th}}$ term, then we have to show that the ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero. Before proceeding with the question, let us see what an A.P. is. An A.P. or Arithmetic Progression is a sequence of numbers such that the difference of any two successive terms is constant. For example, the sequence of 2, 4, 6, 8 is an A.P. with the common difference of 2. We generally write the terms of A.P. as: $a,a+d,a+2d,a+3d\ldots $, where $a$ is the first term and $d$ is the common difference of A.P. Also, the ${{n}^{th}}$ term of A.P. is given by, ${{a}_{n}}=a+\left( n-1 \right)d$.
Now let us consider our question. We know that the ${{n}^{th}}$ term of A.P. is given by, ${{a}_{n}}=a+\left( n-1 \right)d\ldots \ldots \ldots \left( i \right)$.
So, by substituting $n=m$ in this equation, we get, ${{m}^{th}}$ term of A.P. as, $\left( {{a}_{m}} \right)=a+\left( m-1 \right)d$. By multiplying on both sides of the equation, we get,
$m$ times the ${{m}^{th}}$ term of an A.P. $\Rightarrow m{{a}_{m}}=m\left[ a+\left( m-1 \right)d \right]\ldots \ldots \ldots \left( ii \right)$
Also, by multiplying $n$ to both sides of equation (i), we get,
$n$ times the ${{n}^{th}}$ term of an A.P. $\Rightarrow n{{a}_{n}}=n\left[ a+\left( n-1 \right)d \right]\ldots \ldots \ldots \left( iii \right)$
We are given that $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times of the ${{n}^{th}}$ term. So, by equating equation (ii) and equation (iii), we get, $m\left[ a+\left( m-1 \right)d \right]=n\left[ a+\left( n-1 \right)d \right]$. Simplifying this equation, we get,
$\begin{align}
& ma+m\left( m-1 \right)d=na+n\left( n-1 \right)d \\
& \Rightarrow \left( ma-na \right)=n\left( n-1 \right)d-m\left( m-1 \right)d \\
& \Rightarrow a\left( m-n \right)=d\left[ n\left( n-1 \right)-m\left( m-1 \right) \right] \\
& \Rightarrow a\left( m-n \right)=d\left[ {{n}^{2}}-n-{{m}^{2}}+m \right] \\
\end{align}$
We can also write the above equation as,
$a\left( m-n \right)=d\left[ \left( m-n \right)-\left( {{m}^{2}}-{{n}^{2}} \right) \right]$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. By using this in the above equation, we get, $a\left( m-n \right)=d\left[ \left( m-n \right)-\left( m-n \right)\left( m+n \right) \right]$
By taking out $\left( m-n \right)$, the common term from RHS of the above equation, we get,
$a\left( m-n \right)=\left( m-n \right)d\left[ 1-\left( m+n \right) \right]$
By cancelling $\left( m-n \right)$ from both the sides, we get, $a=d\left[ 1-m-n \right]\ldots \ldots \ldots \left( iv \right)$. By substituting $n=m+n$ in equation (i), we get, ${{\left( m+n \right)}^{th}}$ term of the A.P. as ${{a}_{m+n}}=a+\left( m+n-1 \right)d$. By substituting the value of $a$ from equation (iv) in this equation, we get, ${{a}_{m+n}}=d\left[ 1-m-n \right]+\left( m+n-1 \right)d$. By simplifying, we get,
$\begin{align}
& {{a}_{m+n}}=d-dm-dn+dm+dn-d \\
& \Rightarrow {{a}_{m+n}}=0 \\
\end{align}$
Hence, we have proved that ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero.
Note: In this question, students must note that the value of $a$ and $d$ will remain constant as we are talking about the same A.P. throughout the question, while the value of the ${{n}^{th}}$ term will change according to the information provided in the question. Also, students can substitute $d=\dfrac{a}{1-\left( m+n \right)}$ in the equation for ${{m}^{th}}$ term to prove the desired answer, but it is advisable to take the numbers or the terms in whole number values instead of fractions to avoid any mistakes.
Complete step-by-step answer:
We are given that if $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times its ${{n}^{th}}$ term, then we have to show that the ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero. Before proceeding with the question, let us see what an A.P. is. An A.P. or Arithmetic Progression is a sequence of numbers such that the difference of any two successive terms is constant. For example, the sequence of 2, 4, 6, 8 is an A.P. with the common difference of 2. We generally write the terms of A.P. as: $a,a+d,a+2d,a+3d\ldots $, where $a$ is the first term and $d$ is the common difference of A.P. Also, the ${{n}^{th}}$ term of A.P. is given by, ${{a}_{n}}=a+\left( n-1 \right)d$.
Now let us consider our question. We know that the ${{n}^{th}}$ term of A.P. is given by, ${{a}_{n}}=a+\left( n-1 \right)d\ldots \ldots \ldots \left( i \right)$.
So, by substituting $n=m$ in this equation, we get, ${{m}^{th}}$ term of A.P. as, $\left( {{a}_{m}} \right)=a+\left( m-1 \right)d$. By multiplying on both sides of the equation, we get,
$m$ times the ${{m}^{th}}$ term of an A.P. $\Rightarrow m{{a}_{m}}=m\left[ a+\left( m-1 \right)d \right]\ldots \ldots \ldots \left( ii \right)$
Also, by multiplying $n$ to both sides of equation (i), we get,
$n$ times the ${{n}^{th}}$ term of an A.P. $\Rightarrow n{{a}_{n}}=n\left[ a+\left( n-1 \right)d \right]\ldots \ldots \ldots \left( iii \right)$
We are given that $m$ times the ${{m}^{th}}$ term of an A.P. is equal to $n$ times of the ${{n}^{th}}$ term. So, by equating equation (ii) and equation (iii), we get, $m\left[ a+\left( m-1 \right)d \right]=n\left[ a+\left( n-1 \right)d \right]$. Simplifying this equation, we get,
$\begin{align}
& ma+m\left( m-1 \right)d=na+n\left( n-1 \right)d \\
& \Rightarrow \left( ma-na \right)=n\left( n-1 \right)d-m\left( m-1 \right)d \\
& \Rightarrow a\left( m-n \right)=d\left[ n\left( n-1 \right)-m\left( m-1 \right) \right] \\
& \Rightarrow a\left( m-n \right)=d\left[ {{n}^{2}}-n-{{m}^{2}}+m \right] \\
\end{align}$
We can also write the above equation as,
$a\left( m-n \right)=d\left[ \left( m-n \right)-\left( {{m}^{2}}-{{n}^{2}} \right) \right]$
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. By using this in the above equation, we get, $a\left( m-n \right)=d\left[ \left( m-n \right)-\left( m-n \right)\left( m+n \right) \right]$
By taking out $\left( m-n \right)$, the common term from RHS of the above equation, we get,
$a\left( m-n \right)=\left( m-n \right)d\left[ 1-\left( m+n \right) \right]$
By cancelling $\left( m-n \right)$ from both the sides, we get, $a=d\left[ 1-m-n \right]\ldots \ldots \ldots \left( iv \right)$. By substituting $n=m+n$ in equation (i), we get, ${{\left( m+n \right)}^{th}}$ term of the A.P. as ${{a}_{m+n}}=a+\left( m+n-1 \right)d$. By substituting the value of $a$ from equation (iv) in this equation, we get, ${{a}_{m+n}}=d\left[ 1-m-n \right]+\left( m+n-1 \right)d$. By simplifying, we get,
$\begin{align}
& {{a}_{m+n}}=d-dm-dn+dm+dn-d \\
& \Rightarrow {{a}_{m+n}}=0 \\
\end{align}$
Hence, we have proved that ${{\left( m+n \right)}^{th}}$ term of the A.P. is zero.
Note: In this question, students must note that the value of $a$ and $d$ will remain constant as we are talking about the same A.P. throughout the question, while the value of the ${{n}^{th}}$ term will change according to the information provided in the question. Also, students can substitute $d=\dfrac{a}{1-\left( m+n \right)}$ in the equation for ${{m}^{th}}$ term to prove the desired answer, but it is advisable to take the numbers or the terms in whole number values instead of fractions to avoid any mistakes.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

