
If $m{\text{ and }}p$ are positive $(m \geqslant p)$ and $\Delta (m,p) = \left| {\begin{array}{*{20}{l}}
{{}^m{C_p}}&{{}^m{C_{p + 1}}}&{{}^m{C_{p + 2}}} \\
{{}^{m + 1}{C_p}}&{{}^{m + 1}{C_{p + 1}}}&{{}^{m + 1}{C_{p + 2}}} \\
{{}^{m + 2}{C_p}}&{{}^{m + 2}{C_{p + 1}}}&{{}^{m + 2}{C_{p + 2}}}
\end{array}} \right|$ and ${}^m{C_p} = 0{\text{ if }}m < p$, then
This equation has multiple correct options:
A. $\Delta (2,1)/\Delta (1,0) = 4$
B. $\Delta (4,3)/\Delta (3,2) = 2$
C. $\Delta (4,3)/\Delta (2,1) = 5$
D. $\Delta (4,3)/\Delta (1,0) = 10$
Answer
474.6k+ views
Hint:
If we are given ${}^n{C_r}$ then it means that ${}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$ and here $!$ means factorial for the number. Also we should know that ${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Here we are given that
$\Delta (m,p) = \left| {\begin{array}{*{20}{l}}
{{}^m{C_p}}&{{}^m{C_{p + 1}}}&{{}^m{C_{p + 2}}} \\
{{}^{m + 1}{C_p}}&{{}^{m + 1}{C_{p + 1}}}&{{}^{m + 1}{C_{p + 2}}} \\
{{}^{m + 2}{C_p}}&{{}^{m + 2}{C_{p + 1}}}&{{}^{m + 2}{C_{p + 2}}}
\end{array}} \right|$
Now it is also given that ${}^m{C_p} = 0{\text{ if }}m < p$
Now for $m > p$
${}^m{C_p} = \dfrac{{m!}}{{(m - p)!p!}}$
So for option A
We need to find $\Delta (2,1),\Delta (1,0)$
So we get that $m = 2,p = 1$
$\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_{1 + 1}}}&{{}^2{C_{1 + 2}}} \\
{{}^{2 + 1}{C_1}}&{{}^{2 + 1}{C_{1 + 1}}}&{{}^{2 + 1}{C_{1 + 2}}} \\
{{}^{2 + 2}{C_1}}&{{}^{2 + 2}{C_{1 + 1}}}&{{}^{2 + 2}{C_{1 + 2}}}
\end{array}} \right|$
And we also know that ${}^n{C_n} = 1$
And we know that for ${}^m{C_p}{\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^2{C_3} = 0{\text{ }}$
$\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_2}}&{{}^2{C_3}} \\
{{}^3{C_1}}&{{}^3{C_2}}&{{}^3{C_3}} \\
{{}^4{C_1}}&{{}^4{C_2}}&{{}^4{C_3}}
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
2&1&0 \\
3&3&1 \\
4&6&4
\end{array}} \right|$
We know that ${}^4{C_2} = \dfrac{{4!}}{{2!2!}} = \dfrac{{4(3)}}{{2(1)}} = 6,{}^2{C_3} = 0$
So we get that $\Delta (2,1) = 2(12 - 6) - 1(12 - 4) + 0(18 - 12)$
$
\Delta (2,1) = 2(6) - 8 \\
= 4 \\
$
$\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_{0 + 1}}}&{{}^1{C_{0 + 2}}} \\
{{}^{1 + 1}{C_0}}&{{}^{1 + 1}{C_{0 + 1}}}&{{}^{1 + 1}{C_{0 + 2}}} \\
{{}^{1 + 1}{C_0}}&{{}^{1 + 2}{C_{0 + 1}}}&{{}^{1 + 2}{C_{0 + 2}}}
\end{array}} \right|$
$ = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_1}}&{{}^1{C_2}} \\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^2{C_2}} \\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^3{C_2}}
\end{array}} \right|$
So we get that $0! = 1,{}^1{C_0} = \dfrac{{1!}}{{1!0!}} = 1,{}^2{C_0} = \dfrac{{2!}}{{(2 - 0)!0!}} = 1$
So we get that $\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
1&1&0 \\
1&2&1 \\
1&3&3
\end{array}} \right|$
So we get that
So $\Delta (2,1)/\Delta (1,0) = 4/1 = 4$
Hence option A is right and similarly we need to check the other options also
For option B we need to find $\Delta (4,3),\Delta (3,2)$
$\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
{{}^4{C_3}}&{{}^4{C_4}}&{{}^4{C_5}} \\
{{}^5{C_3}}&{{}^5{C_4}}&{{}^5{C_5}} \\
{{}^6{C_3}}&{{}^6{C_4}}&{{}^6{C_5}}
\end{array}} \right|$
Now we know that ${\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^4{C_5} = 0{\text{ }}$
$\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
4&1&0 \\
{\dfrac{{5!}}{{2!3!}}}&5&1 \\
{\dfrac{{6!}}{{3!3!}}}&{\dfrac{{6!}}{{4!2!}}}&6
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
4&1&0 \\
{10}&5&1 \\
{20}&{15}&6
\end{array}} \right|$
So we get that $\Delta (4,3) = 4(30 - 15) - 1(150 - 100) + 0 = 60 - 50 = 10$
Now for$\Delta (3,2)$, $m = 3,p = 2$
$\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
{{}^3{C_2}}&{{}^3{C_3}}&{{}^3{C_4}} \\
{{}^4{C_2}}&{{}^4{C_3}}&{{}^4{C_4}} \\
{{}^5{C_2}}&{{}^5{C_3}}&{{}^5{C_4}}
\end{array}} \right|$
Now we know that ${\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^3{C_4} = 0{\text{ }}$
$\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
3&1&0 \\
{\dfrac{{4!}}{{2!2!}}}&4&1 \\
{\dfrac{{5!}}{{2!3!}}}&{\dfrac{{5!}}{{3!2!}}}&5
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
3&1&0 \\
6&4&1 \\
{10}&{10}&5
\end{array}} \right|$
So we get that $\Delta (3,2) = 3(20 - 10) - 1(30 - 10) + 0 = 10$
So we get that $\Delta (4,3) = 10$ and $\Delta (3,2) = 10$
So $\Delta (4,3)/\Delta (3,2) = 10/10 = 1$
Hence option B is also incorrect.
For option C
We know that$\Delta (4,3) = 10$, $\Delta (2,1) = 4$
So $\Delta (4,3)/\Delta (2,1) = 10/4 = 2.5$
Hence option C is not correct
For option D
We know that$\Delta (4,3) = 10$,$\Delta (1,0) = 1$
$\Delta (4,3)/\Delta (1,0) = 10/1 = 1$
Hence option D is also correct.
Hence we get that option A and D are correct.
Note:
We know that $n! = n(n - 1)(n - 2).........3.2.1$ and we know that $n > 0$
If $n = 0$ then $0! = 1$
Similarly for the combination we know that ${}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$
And for permutation we know that ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Combination is the number of ways of choosing $r$ things whereas permutation includes the selection as well as the arrangement of $r{\text{ out of }}n$ things.
If we are given ${}^n{C_r}$ then it means that ${}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$ and here $!$ means factorial for the number. Also we should know that ${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Here we are given that
$\Delta (m,p) = \left| {\begin{array}{*{20}{l}}
{{}^m{C_p}}&{{}^m{C_{p + 1}}}&{{}^m{C_{p + 2}}} \\
{{}^{m + 1}{C_p}}&{{}^{m + 1}{C_{p + 1}}}&{{}^{m + 1}{C_{p + 2}}} \\
{{}^{m + 2}{C_p}}&{{}^{m + 2}{C_{p + 1}}}&{{}^{m + 2}{C_{p + 2}}}
\end{array}} \right|$
Now it is also given that ${}^m{C_p} = 0{\text{ if }}m < p$
Now for $m > p$
${}^m{C_p} = \dfrac{{m!}}{{(m - p)!p!}}$
So for option A
We need to find $\Delta (2,1),\Delta (1,0)$
So we get that $m = 2,p = 1$
$\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_{1 + 1}}}&{{}^2{C_{1 + 2}}} \\
{{}^{2 + 1}{C_1}}&{{}^{2 + 1}{C_{1 + 1}}}&{{}^{2 + 1}{C_{1 + 2}}} \\
{{}^{2 + 2}{C_1}}&{{}^{2 + 2}{C_{1 + 1}}}&{{}^{2 + 2}{C_{1 + 2}}}
\end{array}} \right|$
And we also know that ${}^n{C_n} = 1$
And we know that for ${}^m{C_p}{\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^2{C_3} = 0{\text{ }}$
$\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_2}}&{{}^2{C_3}} \\
{{}^3{C_1}}&{{}^3{C_2}}&{{}^3{C_3}} \\
{{}^4{C_1}}&{{}^4{C_2}}&{{}^4{C_3}}
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
2&1&0 \\
3&3&1 \\
4&6&4
\end{array}} \right|$
We know that ${}^4{C_2} = \dfrac{{4!}}{{2!2!}} = \dfrac{{4(3)}}{{2(1)}} = 6,{}^2{C_3} = 0$
So we get that $\Delta (2,1) = 2(12 - 6) - 1(12 - 4) + 0(18 - 12)$
$
\Delta (2,1) = 2(6) - 8 \\
= 4 \\
$
$\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_{0 + 1}}}&{{}^1{C_{0 + 2}}} \\
{{}^{1 + 1}{C_0}}&{{}^{1 + 1}{C_{0 + 1}}}&{{}^{1 + 1}{C_{0 + 2}}} \\
{{}^{1 + 1}{C_0}}&{{}^{1 + 2}{C_{0 + 1}}}&{{}^{1 + 2}{C_{0 + 2}}}
\end{array}} \right|$
$ = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_1}}&{{}^1{C_2}} \\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^2{C_2}} \\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^3{C_2}}
\end{array}} \right|$
So we get that $0! = 1,{}^1{C_0} = \dfrac{{1!}}{{1!0!}} = 1,{}^2{C_0} = \dfrac{{2!}}{{(2 - 0)!0!}} = 1$
So we get that $\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
1&1&0 \\
1&2&1 \\
1&3&3
\end{array}} \right|$
So we get that
So $\Delta (2,1)/\Delta (1,0) = 4/1 = 4$
Hence option A is right and similarly we need to check the other options also
For option B we need to find $\Delta (4,3),\Delta (3,2)$
$\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
{{}^4{C_3}}&{{}^4{C_4}}&{{}^4{C_5}} \\
{{}^5{C_3}}&{{}^5{C_4}}&{{}^5{C_5}} \\
{{}^6{C_3}}&{{}^6{C_4}}&{{}^6{C_5}}
\end{array}} \right|$
Now we know that ${\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^4{C_5} = 0{\text{ }}$
$\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
4&1&0 \\
{\dfrac{{5!}}{{2!3!}}}&5&1 \\
{\dfrac{{6!}}{{3!3!}}}&{\dfrac{{6!}}{{4!2!}}}&6
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
4&1&0 \\
{10}&5&1 \\
{20}&{15}&6
\end{array}} \right|$
So we get that $\Delta (4,3) = 4(30 - 15) - 1(150 - 100) + 0 = 60 - 50 = 10$
Now for$\Delta (3,2)$, $m = 3,p = 2$
$\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
{{}^3{C_2}}&{{}^3{C_3}}&{{}^3{C_4}} \\
{{}^4{C_2}}&{{}^4{C_3}}&{{}^4{C_4}} \\
{{}^5{C_2}}&{{}^5{C_3}}&{{}^5{C_4}}
\end{array}} \right|$
Now we know that ${\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^3{C_4} = 0{\text{ }}$
$\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
3&1&0 \\
{\dfrac{{4!}}{{2!2!}}}&4&1 \\
{\dfrac{{5!}}{{2!3!}}}&{\dfrac{{5!}}{{3!2!}}}&5
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
3&1&0 \\
6&4&1 \\
{10}&{10}&5
\end{array}} \right|$
So we get that $\Delta (3,2) = 3(20 - 10) - 1(30 - 10) + 0 = 10$
So we get that $\Delta (4,3) = 10$ and $\Delta (3,2) = 10$
So $\Delta (4,3)/\Delta (3,2) = 10/10 = 1$
Hence option B is also incorrect.
For option C
We know that$\Delta (4,3) = 10$, $\Delta (2,1) = 4$
So $\Delta (4,3)/\Delta (2,1) = 10/4 = 2.5$
Hence option C is not correct
For option D
We know that$\Delta (4,3) = 10$,$\Delta (1,0) = 1$
$\Delta (4,3)/\Delta (1,0) = 10/1 = 1$
Hence option D is also correct.
Hence we get that option A and D are correct.
Note:
We know that $n! = n(n - 1)(n - 2).........3.2.1$ and we know that $n > 0$
If $n = 0$ then $0! = 1$
Similarly for the combination we know that ${}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$
And for permutation we know that ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Combination is the number of ways of choosing $r$ things whereas permutation includes the selection as well as the arrangement of $r{\text{ out of }}n$ things.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
