
If $m{\text{ and }}p$ are positive $(m \geqslant p)$ and $\Delta (m,p) = \left| {\begin{array}{*{20}{l}}
{{}^m{C_p}}&{{}^m{C_{p + 1}}}&{{}^m{C_{p + 2}}} \\
{{}^{m + 1}{C_p}}&{{}^{m + 1}{C_{p + 1}}}&{{}^{m + 1}{C_{p + 2}}} \\
{{}^{m + 2}{C_p}}&{{}^{m + 2}{C_{p + 1}}}&{{}^{m + 2}{C_{p + 2}}}
\end{array}} \right|$ and ${}^m{C_p} = 0{\text{ if }}m < p$, then
This equation has multiple correct options:
A. $\Delta (2,1)/\Delta (1,0) = 4$
B. $\Delta (4,3)/\Delta (3,2) = 2$
C. $\Delta (4,3)/\Delta (2,1) = 5$
D. $\Delta (4,3)/\Delta (1,0) = 10$
Answer
485.1k+ views
Hint:
If we are given ${}^n{C_r}$ then it means that ${}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$ and here $!$ means factorial for the number. Also we should know that ${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Here we are given that
$\Delta (m,p) = \left| {\begin{array}{*{20}{l}}
{{}^m{C_p}}&{{}^m{C_{p + 1}}}&{{}^m{C_{p + 2}}} \\
{{}^{m + 1}{C_p}}&{{}^{m + 1}{C_{p + 1}}}&{{}^{m + 1}{C_{p + 2}}} \\
{{}^{m + 2}{C_p}}&{{}^{m + 2}{C_{p + 1}}}&{{}^{m + 2}{C_{p + 2}}}
\end{array}} \right|$
Now it is also given that ${}^m{C_p} = 0{\text{ if }}m < p$
Now for $m > p$
${}^m{C_p} = \dfrac{{m!}}{{(m - p)!p!}}$
So for option A
We need to find $\Delta (2,1),\Delta (1,0)$
So we get that $m = 2,p = 1$
$\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_{1 + 1}}}&{{}^2{C_{1 + 2}}} \\
{{}^{2 + 1}{C_1}}&{{}^{2 + 1}{C_{1 + 1}}}&{{}^{2 + 1}{C_{1 + 2}}} \\
{{}^{2 + 2}{C_1}}&{{}^{2 + 2}{C_{1 + 1}}}&{{}^{2 + 2}{C_{1 + 2}}}
\end{array}} \right|$
And we also know that ${}^n{C_n} = 1$
And we know that for ${}^m{C_p}{\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^2{C_3} = 0{\text{ }}$
$\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_2}}&{{}^2{C_3}} \\
{{}^3{C_1}}&{{}^3{C_2}}&{{}^3{C_3}} \\
{{}^4{C_1}}&{{}^4{C_2}}&{{}^4{C_3}}
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
2&1&0 \\
3&3&1 \\
4&6&4
\end{array}} \right|$
We know that ${}^4{C_2} = \dfrac{{4!}}{{2!2!}} = \dfrac{{4(3)}}{{2(1)}} = 6,{}^2{C_3} = 0$
So we get that $\Delta (2,1) = 2(12 - 6) - 1(12 - 4) + 0(18 - 12)$
$
\Delta (2,1) = 2(6) - 8 \\
= 4 \\
$
$\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_{0 + 1}}}&{{}^1{C_{0 + 2}}} \\
{{}^{1 + 1}{C_0}}&{{}^{1 + 1}{C_{0 + 1}}}&{{}^{1 + 1}{C_{0 + 2}}} \\
{{}^{1 + 1}{C_0}}&{{}^{1 + 2}{C_{0 + 1}}}&{{}^{1 + 2}{C_{0 + 2}}}
\end{array}} \right|$
$ = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_1}}&{{}^1{C_2}} \\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^2{C_2}} \\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^3{C_2}}
\end{array}} \right|$
So we get that $0! = 1,{}^1{C_0} = \dfrac{{1!}}{{1!0!}} = 1,{}^2{C_0} = \dfrac{{2!}}{{(2 - 0)!0!}} = 1$
So we get that $\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
1&1&0 \\
1&2&1 \\
1&3&3
\end{array}} \right|$
So we get that
So $\Delta (2,1)/\Delta (1,0) = 4/1 = 4$
Hence option A is right and similarly we need to check the other options also
For option B we need to find $\Delta (4,3),\Delta (3,2)$
$\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
{{}^4{C_3}}&{{}^4{C_4}}&{{}^4{C_5}} \\
{{}^5{C_3}}&{{}^5{C_4}}&{{}^5{C_5}} \\
{{}^6{C_3}}&{{}^6{C_4}}&{{}^6{C_5}}
\end{array}} \right|$
Now we know that ${\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^4{C_5} = 0{\text{ }}$
$\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
4&1&0 \\
{\dfrac{{5!}}{{2!3!}}}&5&1 \\
{\dfrac{{6!}}{{3!3!}}}&{\dfrac{{6!}}{{4!2!}}}&6
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
4&1&0 \\
{10}&5&1 \\
{20}&{15}&6
\end{array}} \right|$
So we get that $\Delta (4,3) = 4(30 - 15) - 1(150 - 100) + 0 = 60 - 50 = 10$
Now for$\Delta (3,2)$, $m = 3,p = 2$
$\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
{{}^3{C_2}}&{{}^3{C_3}}&{{}^3{C_4}} \\
{{}^4{C_2}}&{{}^4{C_3}}&{{}^4{C_4}} \\
{{}^5{C_2}}&{{}^5{C_3}}&{{}^5{C_4}}
\end{array}} \right|$
Now we know that ${\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^3{C_4} = 0{\text{ }}$
$\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
3&1&0 \\
{\dfrac{{4!}}{{2!2!}}}&4&1 \\
{\dfrac{{5!}}{{2!3!}}}&{\dfrac{{5!}}{{3!2!}}}&5
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
3&1&0 \\
6&4&1 \\
{10}&{10}&5
\end{array}} \right|$
So we get that $\Delta (3,2) = 3(20 - 10) - 1(30 - 10) + 0 = 10$
So we get that $\Delta (4,3) = 10$ and $\Delta (3,2) = 10$
So $\Delta (4,3)/\Delta (3,2) = 10/10 = 1$
Hence option B is also incorrect.
For option C
We know that$\Delta (4,3) = 10$, $\Delta (2,1) = 4$
So $\Delta (4,3)/\Delta (2,1) = 10/4 = 2.5$
Hence option C is not correct
For option D
We know that$\Delta (4,3) = 10$,$\Delta (1,0) = 1$
$\Delta (4,3)/\Delta (1,0) = 10/1 = 1$
Hence option D is also correct.
Hence we get that option A and D are correct.
Note:
We know that $n! = n(n - 1)(n - 2).........3.2.1$ and we know that $n > 0$
If $n = 0$ then $0! = 1$
Similarly for the combination we know that ${}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$
And for permutation we know that ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Combination is the number of ways of choosing $r$ things whereas permutation includes the selection as well as the arrangement of $r{\text{ out of }}n$ things.
If we are given ${}^n{C_r}$ then it means that ${}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$ and here $!$ means factorial for the number. Also we should know that ${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Here we are given that
$\Delta (m,p) = \left| {\begin{array}{*{20}{l}}
{{}^m{C_p}}&{{}^m{C_{p + 1}}}&{{}^m{C_{p + 2}}} \\
{{}^{m + 1}{C_p}}&{{}^{m + 1}{C_{p + 1}}}&{{}^{m + 1}{C_{p + 2}}} \\
{{}^{m + 2}{C_p}}&{{}^{m + 2}{C_{p + 1}}}&{{}^{m + 2}{C_{p + 2}}}
\end{array}} \right|$
Now it is also given that ${}^m{C_p} = 0{\text{ if }}m < p$
Now for $m > p$
${}^m{C_p} = \dfrac{{m!}}{{(m - p)!p!}}$
So for option A
We need to find $\Delta (2,1),\Delta (1,0)$
So we get that $m = 2,p = 1$
$\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_{1 + 1}}}&{{}^2{C_{1 + 2}}} \\
{{}^{2 + 1}{C_1}}&{{}^{2 + 1}{C_{1 + 1}}}&{{}^{2 + 1}{C_{1 + 2}}} \\
{{}^{2 + 2}{C_1}}&{{}^{2 + 2}{C_{1 + 1}}}&{{}^{2 + 2}{C_{1 + 2}}}
\end{array}} \right|$
And we also know that ${}^n{C_n} = 1$
And we know that for ${}^m{C_p}{\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^2{C_3} = 0{\text{ }}$
$\Delta (2,1) = \left| {\begin{array}{*{20}{l}}
{{}^2{C_1}}&{{}^2{C_2}}&{{}^2{C_3}} \\
{{}^3{C_1}}&{{}^3{C_2}}&{{}^3{C_3}} \\
{{}^4{C_1}}&{{}^4{C_2}}&{{}^4{C_3}}
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
2&1&0 \\
3&3&1 \\
4&6&4
\end{array}} \right|$
We know that ${}^4{C_2} = \dfrac{{4!}}{{2!2!}} = \dfrac{{4(3)}}{{2(1)}} = 6,{}^2{C_3} = 0$
So we get that $\Delta (2,1) = 2(12 - 6) - 1(12 - 4) + 0(18 - 12)$
$
\Delta (2,1) = 2(6) - 8 \\
= 4 \\
$
$\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_{0 + 1}}}&{{}^1{C_{0 + 2}}} \\
{{}^{1 + 1}{C_0}}&{{}^{1 + 1}{C_{0 + 1}}}&{{}^{1 + 1}{C_{0 + 2}}} \\
{{}^{1 + 1}{C_0}}&{{}^{1 + 2}{C_{0 + 1}}}&{{}^{1 + 2}{C_{0 + 2}}}
\end{array}} \right|$
$ = \left| {\begin{array}{*{20}{l}}
{{}^1{C_0}}&{{}^1{C_1}}&{{}^1{C_2}} \\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^2{C_2}} \\
{{}^2{C_0}}&{{}^2{C_1}}&{{}^3{C_2}}
\end{array}} \right|$
So we get that $0! = 1,{}^1{C_0} = \dfrac{{1!}}{{1!0!}} = 1,{}^2{C_0} = \dfrac{{2!}}{{(2 - 0)!0!}} = 1$
So we get that $\Delta (1,0) = \left| {\begin{array}{*{20}{l}}
1&1&0 \\
1&2&1 \\
1&3&3
\end{array}} \right|$
So we get that
So $\Delta (2,1)/\Delta (1,0) = 4/1 = 4$
Hence option A is right and similarly we need to check the other options also
For option B we need to find $\Delta (4,3),\Delta (3,2)$
$\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
{{}^4{C_3}}&{{}^4{C_4}}&{{}^4{C_5}} \\
{{}^5{C_3}}&{{}^5{C_4}}&{{}^5{C_5}} \\
{{}^6{C_3}}&{{}^6{C_4}}&{{}^6{C_5}}
\end{array}} \right|$
Now we know that ${\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^4{C_5} = 0{\text{ }}$
$\Delta (4,3) = \left| {\begin{array}{*{20}{l}}
4&1&0 \\
{\dfrac{{5!}}{{2!3!}}}&5&1 \\
{\dfrac{{6!}}{{3!3!}}}&{\dfrac{{6!}}{{4!2!}}}&6
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
4&1&0 \\
{10}&5&1 \\
{20}&{15}&6
\end{array}} \right|$
So we get that $\Delta (4,3) = 4(30 - 15) - 1(150 - 100) + 0 = 60 - 50 = 10$
Now for$\Delta (3,2)$, $m = 3,p = 2$
$\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
{{}^3{C_2}}&{{}^3{C_3}}&{{}^3{C_4}} \\
{{}^4{C_2}}&{{}^4{C_3}}&{{}^4{C_4}} \\
{{}^5{C_2}}&{{}^5{C_3}}&{{}^5{C_4}}
\end{array}} \right|$
Now we know that ${\text{ if }}m < p{\text{ then }}{}^m{C_p} = 0{\text{ here }}{}^3{C_4} = 0{\text{ }}$
$\Delta (3,2) = \left| {\begin{array}{*{20}{l}}
3&1&0 \\
{\dfrac{{4!}}{{2!2!}}}&4&1 \\
{\dfrac{{5!}}{{2!3!}}}&{\dfrac{{5!}}{{3!2!}}}&5
\end{array}} \right| = \left| {\begin{array}{*{20}{l}}
3&1&0 \\
6&4&1 \\
{10}&{10}&5
\end{array}} \right|$
So we get that $\Delta (3,2) = 3(20 - 10) - 1(30 - 10) + 0 = 10$
So we get that $\Delta (4,3) = 10$ and $\Delta (3,2) = 10$
So $\Delta (4,3)/\Delta (3,2) = 10/10 = 1$
Hence option B is also incorrect.
For option C
We know that$\Delta (4,3) = 10$, $\Delta (2,1) = 4$
So $\Delta (4,3)/\Delta (2,1) = 10/4 = 2.5$
Hence option C is not correct
For option D
We know that$\Delta (4,3) = 10$,$\Delta (1,0) = 1$
$\Delta (4,3)/\Delta (1,0) = 10/1 = 1$
Hence option D is also correct.
Hence we get that option A and D are correct.
Note:
We know that $n! = n(n - 1)(n - 2).........3.2.1$ and we know that $n > 0$
If $n = 0$ then $0! = 1$
Similarly for the combination we know that ${}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}$
And for permutation we know that ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Combination is the number of ways of choosing $r$ things whereas permutation includes the selection as well as the arrangement of $r{\text{ out of }}n$ things.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE
