If $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ (where a, b, c are different positive real numbers ≠ 1) then find the value of $ abc $ .
Answer
Verified
456.6k+ views
Hint: A logarithm, of a base b, is the power to which the base needs to be raised to yield a given number. We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , so first convert the given logarithmic terms with bases to this form using this conversion. And then solve the remaining solution referring to the below mentioned formula.
Formulas used:
$ {\log _b}a = \dfrac{{\log a}}{{\log b}} $
If $ x + y + z = 0 $ , then $ {x^3} + {y^3} + {z^3} = 3xyz $ and vice-versa.
Complete step-by-step answer:
We are given a logarithmic equation $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ where a, b, c are different positive real numbers ≠ 1.
We have to find the value of $ abc $ .
As we already know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ .
Therefore, Using the above conversion we are converting the logarithmic terms present in the given equation into this fractional form.
$ {\log _c}a = \dfrac{{\log a}}{{\log c}} $
$ {\log _a}b = \dfrac{{\log b}}{{\log a}} $
$ {\log _c}b = \dfrac{{\log b}}{{\log c}} $
$ {\log _a}c = \dfrac{{\log c}}{{\log a}} $
$ {\log _b}c = \dfrac{{\log c}}{{\log b}} $
On substituting all the obtained fractional terms in $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ , we get
$ \left( {\dfrac{{\log a}}{{\log b}} \times \dfrac{{\log a}}{{\log c}}} \right) + \left( {\dfrac{{\log b}}{{\log a}} \times \dfrac{{\log b}}{{\log c}}} \right) + \left( {\dfrac{{\log c}}{{\log a}} \times \dfrac{{\log c}}{{\log b}}} \right) = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^2}}}{{\log b.\log c}} + \dfrac{{{{\left( {\log b} \right)}^2}}}{{\log a.\log c}} + \dfrac{{{{\left( {\log c} \right)}^2}}}{{\log a.\log b}} = 3 $
Take out the LCM and convert the above left hand side into a single fraction, the LCM is $ \log a.\log b.\log c $
$ \Rightarrow \dfrac{{\log a \times {{\left( {\log a} \right)}^2} + \log b \times {{\left( {\log b} \right)}^2} + \log c \times {{\left( {\log c} \right)}^2}}}{{\log a.\log b.\log c}} = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^3} + {{\left( {\log b} \right)}^3} + {{\left( {\log c} \right)}^3}}}{{\log a.\log b.\log c}} = 3 $
On cross multiplication, we get
$ \Rightarrow {\left( {\log a} \right)^3} + {\left( {\log b} \right)^3} + {\left( {\log c} \right)^3} = 3 \times \left( {\log a.\log b.\log c} \right) = 3\log a.\log b.\log c $
As we can see, the above equation is in the form of $ {x^3} + {y^3} + {z^3} = 3xyz $ , where x is $ \log a $ , y is $ \log b $ and z is $ \log c $
Therefore, $ x + y + z $ must be equal to zero which means $ \log a + \log b + \log c = 0 $
We know that $ \log a + \log b $ is equal to $ \log ab $
Therefore, $ \log a + \log b + \log c = \log abc $
$ \log abc = 0 $
Sending the logarithm to the right hand side (as $ \log abc $ is a common logarithm it will have a base 10)
$ abc = {10^0} = 1 $ (Anything to the power zero is equal to 1)
Therefore, the value of $ abc $ is 1.
So, the correct answer is “1”.
Note: We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , which can also be written as $ \dfrac{1}{{\left( {\dfrac{{\log b}}{{\log a}}} \right)}} = \dfrac{1}{{{{\log }_a}b}} $ . And while finding the value of $ {\log _b}a $ , confirm that b is always greater than zero and never equal 1; a must be a positive real number. If $ {\log _b}a = k $ , then $ a = {b^k} $
Formulas used:
$ {\log _b}a = \dfrac{{\log a}}{{\log b}} $
If $ x + y + z = 0 $ , then $ {x^3} + {y^3} + {z^3} = 3xyz $ and vice-versa.
Complete step-by-step answer:
We are given a logarithmic equation $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ where a, b, c are different positive real numbers ≠ 1.
We have to find the value of $ abc $ .
As we already know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ .
Therefore, Using the above conversion we are converting the logarithmic terms present in the given equation into this fractional form.
$ {\log _c}a = \dfrac{{\log a}}{{\log c}} $
$ {\log _a}b = \dfrac{{\log b}}{{\log a}} $
$ {\log _c}b = \dfrac{{\log b}}{{\log c}} $
$ {\log _a}c = \dfrac{{\log c}}{{\log a}} $
$ {\log _b}c = \dfrac{{\log c}}{{\log b}} $
On substituting all the obtained fractional terms in $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ , we get
$ \left( {\dfrac{{\log a}}{{\log b}} \times \dfrac{{\log a}}{{\log c}}} \right) + \left( {\dfrac{{\log b}}{{\log a}} \times \dfrac{{\log b}}{{\log c}}} \right) + \left( {\dfrac{{\log c}}{{\log a}} \times \dfrac{{\log c}}{{\log b}}} \right) = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^2}}}{{\log b.\log c}} + \dfrac{{{{\left( {\log b} \right)}^2}}}{{\log a.\log c}} + \dfrac{{{{\left( {\log c} \right)}^2}}}{{\log a.\log b}} = 3 $
Take out the LCM and convert the above left hand side into a single fraction, the LCM is $ \log a.\log b.\log c $
$ \Rightarrow \dfrac{{\log a \times {{\left( {\log a} \right)}^2} + \log b \times {{\left( {\log b} \right)}^2} + \log c \times {{\left( {\log c} \right)}^2}}}{{\log a.\log b.\log c}} = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^3} + {{\left( {\log b} \right)}^3} + {{\left( {\log c} \right)}^3}}}{{\log a.\log b.\log c}} = 3 $
On cross multiplication, we get
$ \Rightarrow {\left( {\log a} \right)^3} + {\left( {\log b} \right)^3} + {\left( {\log c} \right)^3} = 3 \times \left( {\log a.\log b.\log c} \right) = 3\log a.\log b.\log c $
As we can see, the above equation is in the form of $ {x^3} + {y^3} + {z^3} = 3xyz $ , where x is $ \log a $ , y is $ \log b $ and z is $ \log c $
Therefore, $ x + y + z $ must be equal to zero which means $ \log a + \log b + \log c = 0 $
We know that $ \log a + \log b $ is equal to $ \log ab $
Therefore, $ \log a + \log b + \log c = \log abc $
$ \log abc = 0 $
Sending the logarithm to the right hand side (as $ \log abc $ is a common logarithm it will have a base 10)
$ abc = {10^0} = 1 $ (Anything to the power zero is equal to 1)
Therefore, the value of $ abc $ is 1.
So, the correct answer is “1”.
Note: We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , which can also be written as $ \dfrac{1}{{\left( {\dfrac{{\log b}}{{\log a}}} \right)}} = \dfrac{1}{{{{\log }_a}b}} $ . And while finding the value of $ {\log _b}a $ , confirm that b is always greater than zero and never equal 1; a must be a positive real number. If $ {\log _b}a = k $ , then $ a = {b^k} $
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE