Answer

Verified

427.5k+ views

**Hint**: A logarithm, of a base b, is the power to which the base needs to be raised to yield a given number. We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , so first convert the given logarithmic terms with bases to this form using this conversion. And then solve the remaining solution referring to the below mentioned formula.

Formulas used:

$ {\log _b}a = \dfrac{{\log a}}{{\log b}} $

If $ x + y + z = 0 $ , then $ {x^3} + {y^3} + {z^3} = 3xyz $ and vice-versa.

**Complete step-by-step answer**:

We are given a logarithmic equation $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ where a, b, c are different positive real numbers ≠ 1.

We have to find the value of $ abc $ .

As we already know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ .

Therefore, Using the above conversion we are converting the logarithmic terms present in the given equation into this fractional form.

$ {\log _c}a = \dfrac{{\log a}}{{\log c}} $

$ {\log _a}b = \dfrac{{\log b}}{{\log a}} $

$ {\log _c}b = \dfrac{{\log b}}{{\log c}} $

$ {\log _a}c = \dfrac{{\log c}}{{\log a}} $

$ {\log _b}c = \dfrac{{\log c}}{{\log b}} $

On substituting all the obtained fractional terms in $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ , we get

$ \left( {\dfrac{{\log a}}{{\log b}} \times \dfrac{{\log a}}{{\log c}}} \right) + \left( {\dfrac{{\log b}}{{\log a}} \times \dfrac{{\log b}}{{\log c}}} \right) + \left( {\dfrac{{\log c}}{{\log a}} \times \dfrac{{\log c}}{{\log b}}} \right) = 3 $

$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^2}}}{{\log b.\log c}} + \dfrac{{{{\left( {\log b} \right)}^2}}}{{\log a.\log c}} + \dfrac{{{{\left( {\log c} \right)}^2}}}{{\log a.\log b}} = 3 $

Take out the LCM and convert the above left hand side into a single fraction, the LCM is $ \log a.\log b.\log c $

$ \Rightarrow \dfrac{{\log a \times {{\left( {\log a} \right)}^2} + \log b \times {{\left( {\log b} \right)}^2} + \log c \times {{\left( {\log c} \right)}^2}}}{{\log a.\log b.\log c}} = 3 $

$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^3} + {{\left( {\log b} \right)}^3} + {{\left( {\log c} \right)}^3}}}{{\log a.\log b.\log c}} = 3 $

On cross multiplication, we get

$ \Rightarrow {\left( {\log a} \right)^3} + {\left( {\log b} \right)^3} + {\left( {\log c} \right)^3} = 3 \times \left( {\log a.\log b.\log c} \right) = 3\log a.\log b.\log c $

As we can see, the above equation is in the form of $ {x^3} + {y^3} + {z^3} = 3xyz $ , where x is $ \log a $ , y is $ \log b $ and z is $ \log c $

Therefore, $ x + y + z $ must be equal to zero which means $ \log a + \log b + \log c = 0 $

We know that $ \log a + \log b $ is equal to $ \log ab $

Therefore, $ \log a + \log b + \log c = \log abc $

$ \log abc = 0 $

Sending the logarithm to the right hand side (as $ \log abc $ is a common logarithm it will have a base 10)

$ abc = {10^0} = 1 $ (Anything to the power zero is equal to 1)

Therefore, the value of $ abc $ is 1.

**So, the correct answer is “1”.**

**Note**: We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , which can also be written as $ \dfrac{1}{{\left( {\dfrac{{\log b}}{{\log a}}} \right)}} = \dfrac{1}{{{{\log }_a}b}} $ . And while finding the value of $ {\log _b}a $ , confirm that b is always greater than zero and never equal 1; a must be a positive real number. If $ {\log _b}a = k $ , then $ a = {b^k} $

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

Casparian strips are present in of the root A Epiblema class 12 biology CBSE