If ${\log _3}5 = x$ and ${\log _{25}}11 = y$ then the value of ${\log _3}\left( {\dfrac{{11}}{3}} \right)$ in terms of x and y is
Answer
Verified
457.8k+ views
Hint: ${\log _3}5 = x$and ${\log _{25}}11 = y$ we will some property of logarithmic
${\log _a}b = \dfrac{{\log b}}{{\log a}}$ and ${\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}}$ .
$\log {a^b} = b\log a$then ${\log _{25}}11 = \dfrac{{\log 11}}{{2\log 5}}$. Then we will divide it with $\log 3$ then we get ${\log _{25}}11 = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}$ from this we will get the value of ${\log _3}11$
And $\log \dfrac{a}{b} = \log a - \log b$ then ${\log _3}\dfrac{{11}}{3} = {\log _3}11 - {\log _3}3$ and ${\log _a}a = 1$ then substituting all the values we will get the answer.
Complete step-by-step answer:
given ${\log _3}5 = x$ and ${\log _{25}}11 = y$
it is known that ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ then
${\log _{25}}11 = y$
$ \Rightarrow {\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}} = y$
We know that $\log {a^b} = b\log a$ so,
$y = \dfrac{{\log 11}}{{2\log 5}}$
Dividing denominator and numerator with $\log 3$ then we get
\[y = \dfrac{{\dfrac{{\log 11}}{{\log 3}}}}{{\dfrac{{2\log 5}}{{\log 3}}}} = y = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}\]
According to question ${\log _3}5 = x$
Then ${\log _3}11 = 2yx$ …. (1)
Now, ${\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3$ as $\left[ {\log \dfrac{a}{b} = \log a - \log b} \right]$
And we know that ${\log _a}a = 1$ then ${\log _3}3 = 1$ and substituting the value (1) we get
${\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1$
Note: Properties used in question are
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log {a^b} = b\log a$
$\log \dfrac{a}{b} = \log a - \log b$
${\log _a}a = 1$
If there is nothing is written is base then it has a default 10
${\log _a}b = \dfrac{{\log b}}{{\log a}}$ and ${\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}}$ .
$\log {a^b} = b\log a$then ${\log _{25}}11 = \dfrac{{\log 11}}{{2\log 5}}$. Then we will divide it with $\log 3$ then we get ${\log _{25}}11 = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}$ from this we will get the value of ${\log _3}11$
And $\log \dfrac{a}{b} = \log a - \log b$ then ${\log _3}\dfrac{{11}}{3} = {\log _3}11 - {\log _3}3$ and ${\log _a}a = 1$ then substituting all the values we will get the answer.
Complete step-by-step answer:
given ${\log _3}5 = x$ and ${\log _{25}}11 = y$
it is known that ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ then
${\log _{25}}11 = y$
$ \Rightarrow {\log _{25}}11 = \dfrac{{\log 11}}{{\log 25}} = y$
We know that $\log {a^b} = b\log a$ so,
$y = \dfrac{{\log 11}}{{2\log 5}}$
Dividing denominator and numerator with $\log 3$ then we get
\[y = \dfrac{{\dfrac{{\log 11}}{{\log 3}}}}{{\dfrac{{2\log 5}}{{\log 3}}}} = y = \dfrac{{{{\log }_3}11}}{{2{{\log }_3}5}}\]
According to question ${\log _3}5 = x$
Then ${\log _3}11 = 2yx$ …. (1)
Now, ${\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3$ as $\left[ {\log \dfrac{a}{b} = \log a - \log b} \right]$
And we know that ${\log _a}a = 1$ then ${\log _3}3 = 1$ and substituting the value (1) we get
${\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1$
Note: Properties used in question are
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log {a^b} = b\log a$
$\log \dfrac{a}{b} = \log a - \log b$
${\log _a}a = 1$
If there is nothing is written is base then it has a default 10
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE