
If \[{\log _2}\left( {x + y} \right) = {\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2}}\] then find the values of x and y.
Answer
585.6k+ views
Hint: We will use the basics of logarithm here. First we will simplify the third term and then we will use it to find the value of x and y with the first two ratios.
Complete step-by-step answer:
Given that,
\[{\log _2}\left( {x + y} \right) = {\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2}}\]
Now
\[\dfrac{{\log 25}}{{\log 0.2}}\]
Here 25 can be written as square of 5 and 0.2 can be written in fraction form
\[
\Rightarrow \dfrac{{\log {5^2}}}{{\log \dfrac{2}{{10}}}} \\
\Rightarrow \dfrac{{2\log 5}}{{\log \dfrac{1}{5}}} \\
\Rightarrow \dfrac{{2\log 5}}{{\log {5^{ - 1}}}} \\
\Rightarrow \dfrac{{2\log 5}}{{ - 1\log 5}} \\
\]
Cancelling log5,
\[ \Rightarrow - 2\]
Thus we simplified the last term. Now we will use it with the first two terms.
\[{\log _2}\left( {x + y} \right) = \dfrac{{\log 25}}{{\log 0.2}}\]
\[
{\log _2}\left( {x + y} \right) = - 2 \\
\Rightarrow \dfrac{{\log (x + y)}}{{\log 2}} = - 2 \\
\Rightarrow \log (x + y) = - 2\log 2 \\
\Rightarrow \log (x + y) = \log {2^{ - 2}} \\
\Rightarrow \log (x + y) = \log \dfrac{1}{4} \\
\]
Cancelling log from both sides,
\[ \Rightarrow x + y = \dfrac{1}{4}\] →equation 1
Similarly using it with second ratio,
\[{\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2}}\]
\[
{\log _3}\left( {x - y} \right) = - 2 \\
\Rightarrow \dfrac{{\log (x - y)}}{{\log 3}} = - 2 \\
\Rightarrow \log (x - y) = - 2\log 3 \\
\Rightarrow \log (x - y) = \log {3^{ - 2}} \\
\Rightarrow \log (x - y) = \log \dfrac{1}{9} \\
\]
Cancelling log from both sides,
\[ \Rightarrow x - y = \dfrac{1}{9}\] →equation2
Now we will find the value of x in y form from equation2 \[ \Rightarrow x = y + \dfrac{1}{9}\]
Putting this value in equation1 we get
\[
\Rightarrow y + \dfrac{1}{9} + y = \dfrac{1}{4} \\
\Rightarrow 2y = \dfrac{1}{4} - \dfrac{1}{9} \\
\]
Taking LCM,
\[
\Rightarrow 2y = \dfrac{{9 - 4}}{{36}} \\
\Rightarrow 2y = \dfrac{5}{{36}} \\
\Rightarrow y = \dfrac{5}{{36 \times 2}} \\
\Rightarrow y = \dfrac{5}{{72}} \\
\]
This is the value of y.
Now let’s find the value of x. Putting this value of y in equation2
\[
\Rightarrow x = \dfrac{5}{{72}} + \dfrac{1}{9} \\
\Rightarrow x = \dfrac{5}{{72}} + \dfrac{8}{{72}} \\
\Rightarrow x = \dfrac{{13}}{{72}} \\
\]
Hence found the values of both \[x = \dfrac{{13}}{{72}}\] and \[y = \dfrac{5}{{72}}\].
Note: In this problem students just need to use simple logarithmic rules and apply them. Rules like,
1.\[{\log _b}a = \dfrac{{\log a}}{{\log b}}\]
2.\[\log {a^n} = n\log a\]
Complete step-by-step answer:
Given that,
\[{\log _2}\left( {x + y} \right) = {\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2}}\]
Now
\[\dfrac{{\log 25}}{{\log 0.2}}\]
Here 25 can be written as square of 5 and 0.2 can be written in fraction form
\[
\Rightarrow \dfrac{{\log {5^2}}}{{\log \dfrac{2}{{10}}}} \\
\Rightarrow \dfrac{{2\log 5}}{{\log \dfrac{1}{5}}} \\
\Rightarrow \dfrac{{2\log 5}}{{\log {5^{ - 1}}}} \\
\Rightarrow \dfrac{{2\log 5}}{{ - 1\log 5}} \\
\]
Cancelling log5,
\[ \Rightarrow - 2\]
Thus we simplified the last term. Now we will use it with the first two terms.
\[{\log _2}\left( {x + y} \right) = \dfrac{{\log 25}}{{\log 0.2}}\]
\[
{\log _2}\left( {x + y} \right) = - 2 \\
\Rightarrow \dfrac{{\log (x + y)}}{{\log 2}} = - 2 \\
\Rightarrow \log (x + y) = - 2\log 2 \\
\Rightarrow \log (x + y) = \log {2^{ - 2}} \\
\Rightarrow \log (x + y) = \log \dfrac{1}{4} \\
\]
Cancelling log from both sides,
\[ \Rightarrow x + y = \dfrac{1}{4}\] →equation 1
Similarly using it with second ratio,
\[{\log _3}\left( {x - y} \right) = \dfrac{{\log 25}}{{\log 0.2}}\]
\[
{\log _3}\left( {x - y} \right) = - 2 \\
\Rightarrow \dfrac{{\log (x - y)}}{{\log 3}} = - 2 \\
\Rightarrow \log (x - y) = - 2\log 3 \\
\Rightarrow \log (x - y) = \log {3^{ - 2}} \\
\Rightarrow \log (x - y) = \log \dfrac{1}{9} \\
\]
Cancelling log from both sides,
\[ \Rightarrow x - y = \dfrac{1}{9}\] →equation2
Now we will find the value of x in y form from equation2 \[ \Rightarrow x = y + \dfrac{1}{9}\]
Putting this value in equation1 we get
\[
\Rightarrow y + \dfrac{1}{9} + y = \dfrac{1}{4} \\
\Rightarrow 2y = \dfrac{1}{4} - \dfrac{1}{9} \\
\]
Taking LCM,
\[
\Rightarrow 2y = \dfrac{{9 - 4}}{{36}} \\
\Rightarrow 2y = \dfrac{5}{{36}} \\
\Rightarrow y = \dfrac{5}{{36 \times 2}} \\
\Rightarrow y = \dfrac{5}{{72}} \\
\]
This is the value of y.
Now let’s find the value of x. Putting this value of y in equation2
\[
\Rightarrow x = \dfrac{5}{{72}} + \dfrac{1}{9} \\
\Rightarrow x = \dfrac{5}{{72}} + \dfrac{8}{{72}} \\
\Rightarrow x = \dfrac{{13}}{{72}} \\
\]
Hence found the values of both \[x = \dfrac{{13}}{{72}}\] and \[y = \dfrac{5}{{72}}\].
Note: In this problem students just need to use simple logarithmic rules and apply them. Rules like,
1.\[{\log _b}a = \dfrac{{\log a}}{{\log b}}\]
2.\[\log {a^n} = n\log a\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

