
If \[{\text{log 15 = a}}\] and \[{\text{log 75 = b}}\] then \[{\text{log7545}}\] is:
A) \[\dfrac{{3b - a}}{a}\]
B) \[\dfrac{{b - 3a}}{a}\]
C) \[\dfrac{{3a - b}}{b}\]
D) \[\dfrac{{a - 3b}}{b}\]
Answer
591.3k+ views
Hint: In order to solve this problem we need to convert each of the logs to the base of $e$ and then apply the property of the logarithm function to find the desired value.
Properties of log function are:
\[\log {\text{ab = }}\dfrac{{\log eb}}{{\log ea}}\]
\[{\text{log_e}}\left( {{\text{ab}}} \right){\text{ = log_ea + log_eb}}\]
\[{\text{log_e}}{{\text{a}}^{\text{b}}} = {\text{blog_ea}}\]
Complete step by step solution:
We are given \[{\text{log 15 = a}}\] and \[{\text{log 75 = b}}\] and we need to find the value of \[{\text{log7545}}\].
First we will convert the \[{\text{log7545}}\] to the log with base e by using the following property of log functions:
\[\log {\text{ab = }}\dfrac{{\log eb}}{{\log ea}}\] (property 1)
Hence by applying the property 1 we get:
\[{\text{log7545}} = \dfrac{{\log e45}}{{\log e75}}..............(1)\]
Also, we know that
\[
{\text{log_e 15}} = {\text{log_e }}\left( {3 \times 5} \right) \\
{\text{log_e 75}} = {\text{log_e }}\left( {3 \times {5^2}} \right) \\
\log e45 = {\text{log_e }}\left( {{3^2} \times 5} \right) \\
\]
Now using another property of log functions for above values:
\[{\text{log_e}}\left( {{\text{ab}}} \right){\text{ = log_ea + log_eb}}\] (property 2)
Applying the property 2 on \[{\text{log_e 15}}\] we get:
\[
{\text{log_e 15}} = {\text{log_e3 + log_e5}} \\
{\text{a}} = {\text{log_e3 + log_e5 }}...............\left( 2 \right) \\
\]
Now applying the property 2 on \[{\text{log_e 75}}\] we get:
\[{\text{log_e 75}} = {\text{log_e3 + log_e}}{{\text{5}}^2}\]
We can use another property of log functions here:
\[{\text{log_e}}{{\text{a}}^{\text{b}}} = {\text{blog_ea}}\] (property 3)
Applying property 3 we get:
\[
{\text{log_e 75}} = {\text{log_e3 + 2log_e5}} \\
{\text{b = log_e3 + 2log_e5 }}................\left( 3 \right) \\
\]
Now, applying property 2 on \[\log e45\] we get:
\[\log e45 = {\text{log_e}}{{\text{3}}^2}{\text{ + log_e5}}\]
Applying property 3 now on this equation we get:
\[\log e45 = 2{\text{log_e3 + log_e5 }}..............\left( 4 \right)\]
Now solving the equation 2 and equation 3 by elimination method to get values of \[{\text{log_e3}}\] and \[{\text{log_e5}}\] in terms of a and b :
Multiplying equation 2 by 2 and then subtracting equation 3 from equation 2 we get:
\[
{\text{2a}} - {\text{b}} = 2{\text{log_e3 + 2log_e5}} - {\text{log_e3}} - {\text{2log_e5}} \\
{\text{2a}} - {\text{b = log_e3}} \\
{\text{b}} - {\text{a = log_e5}} \\
\]
Now putting these values in equation 4 we get:
\[
\log e45 = 2\left( {{\text{2a}} - {\text{b}}} \right){\text{ + b}} - {\text{a}} \\
\log e45 = 4{\text{a}} - {\text{2b}} + {\text{b}} - {\text{a}} \\
\log e45 = 3{\text{a}} - {\text{b}} \\
\]
Now putting the values of \[\log e45\] and \[{\text{log_e 75}}\] in equation 1 we get:
\[{\text{log7545}} = \dfrac{{{\text{3a}} - {\text{b}}}}{{\text{b}}}\]
Option (C) is correct.
Note:
Students should keep in mind that the quantity inside the logarithm function can never be zero as the logarithm function is not defined at zero.
Also, the logarithm function is a strictly increasing function.
Properties of log function are:
\[\log {\text{ab = }}\dfrac{{\log eb}}{{\log ea}}\]
\[{\text{log_e}}\left( {{\text{ab}}} \right){\text{ = log_ea + log_eb}}\]
\[{\text{log_e}}{{\text{a}}^{\text{b}}} = {\text{blog_ea}}\]
Complete step by step solution:
We are given \[{\text{log 15 = a}}\] and \[{\text{log 75 = b}}\] and we need to find the value of \[{\text{log7545}}\].
First we will convert the \[{\text{log7545}}\] to the log with base e by using the following property of log functions:
\[\log {\text{ab = }}\dfrac{{\log eb}}{{\log ea}}\] (property 1)
Hence by applying the property 1 we get:
\[{\text{log7545}} = \dfrac{{\log e45}}{{\log e75}}..............(1)\]
Also, we know that
\[
{\text{log_e 15}} = {\text{log_e }}\left( {3 \times 5} \right) \\
{\text{log_e 75}} = {\text{log_e }}\left( {3 \times {5^2}} \right) \\
\log e45 = {\text{log_e }}\left( {{3^2} \times 5} \right) \\
\]
Now using another property of log functions for above values:
\[{\text{log_e}}\left( {{\text{ab}}} \right){\text{ = log_ea + log_eb}}\] (property 2)
Applying the property 2 on \[{\text{log_e 15}}\] we get:
\[
{\text{log_e 15}} = {\text{log_e3 + log_e5}} \\
{\text{a}} = {\text{log_e3 + log_e5 }}...............\left( 2 \right) \\
\]
Now applying the property 2 on \[{\text{log_e 75}}\] we get:
\[{\text{log_e 75}} = {\text{log_e3 + log_e}}{{\text{5}}^2}\]
We can use another property of log functions here:
\[{\text{log_e}}{{\text{a}}^{\text{b}}} = {\text{blog_ea}}\] (property 3)
Applying property 3 we get:
\[
{\text{log_e 75}} = {\text{log_e3 + 2log_e5}} \\
{\text{b = log_e3 + 2log_e5 }}................\left( 3 \right) \\
\]
Now, applying property 2 on \[\log e45\] we get:
\[\log e45 = {\text{log_e}}{{\text{3}}^2}{\text{ + log_e5}}\]
Applying property 3 now on this equation we get:
\[\log e45 = 2{\text{log_e3 + log_e5 }}..............\left( 4 \right)\]
Now solving the equation 2 and equation 3 by elimination method to get values of \[{\text{log_e3}}\] and \[{\text{log_e5}}\] in terms of a and b :
Multiplying equation 2 by 2 and then subtracting equation 3 from equation 2 we get:
\[
{\text{2a}} - {\text{b}} = 2{\text{log_e3 + 2log_e5}} - {\text{log_e3}} - {\text{2log_e5}} \\
{\text{2a}} - {\text{b = log_e3}} \\
{\text{b}} - {\text{a = log_e5}} \\
\]
Now putting these values in equation 4 we get:
\[
\log e45 = 2\left( {{\text{2a}} - {\text{b}}} \right){\text{ + b}} - {\text{a}} \\
\log e45 = 4{\text{a}} - {\text{2b}} + {\text{b}} - {\text{a}} \\
\log e45 = 3{\text{a}} - {\text{b}} \\
\]
Now putting the values of \[\log e45\] and \[{\text{log_e 75}}\] in equation 1 we get:
\[{\text{log7545}} = \dfrac{{{\text{3a}} - {\text{b}}}}{{\text{b}}}\]
Option (C) is correct.
Note:
Students should keep in mind that the quantity inside the logarithm function can never be zero as the logarithm function is not defined at zero.
Also, the logarithm function is a strictly increasing function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

