
If $\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3$ and $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$ then the value of $\left| {{z}_{1}}+{{z}_{2}}+{{z}_{3}} \right|$ is equal to ?
a)2
b)3
c)4
d)6
Answer
512.1k+ views
Hint: We will use two formula to solve this question $z\overline{z}={{\left| z \right|}^{2}}$ also, $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$. First we will solve the given relation $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$, to get the value of $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|$ and then from this we will find the value of $\left| {{z}_{1}}+{{z}_{2}}+{{z}_{3}} \right|$, using the second relation.
Complete step-by-step answer:
It is given in the question that $\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3$ also a relation is given - $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$ and then we have to find the value of $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|$. Now, we know that for any complex number z, $z\overline{z}={{\left| z \right|}^{2}}$ thus, from the formula we get, ${{z}_{1}}\overline{{{z}_{1}}}={{\left| 1 \right|}^{2}}=1$ and ${{z}_{2}}\overline{{{z}_{2}}}={{\left| 2 \right|}^{2}}=4$ and ${{z}_{3}}\overline{{{z}_{3}}}={{\left| 3 \right|}^{2}}=9$. Now, we will replace the 9 as ${{z}_{3}}\overline{{{z}_{3}}}$ , 4 as ${{z}_{2}}\overline{{{z}_{2}}}$ and 1 as \[{{z}_{1}}\overline{{{z}_{1}}}\] in the given relation $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$,
We get - $\left| {{z}_{3}}\overline{{{z}_{3}}}{{z}_{1}}{{z}_{2}}+{{z}_{1}}{{z}_{3}}{{z}_{2}}\overline{{{z}_{2}}}+{{z}_{2}}{{z}_{3}}{{z}_{1}}\overline{{{z}_{1}}} \right|=12$ taking ${{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}}$ common in LHS we get - $\left| {{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$, Solving further, we get $\left| {{z}_{1}} \right|\centerdot \left| {{z}_{2}} \right|\centerdot \left| {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$ we have ${{z}_{1}}=1,{{z}_{2}}=2$ and ${{z}_{3}}=3$, on putting these values in the above equation we get $1\cdot 2\cdot 3\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$, that is, $6\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$ or $\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\dfrac{12}{6}=2$.
Now, we know that $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$, therefore we can say that \[\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2\] or we get the value of expression $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2$ thus option a) is the correct answer.
Note: Usually student get stuck in the last step because most of the student don’t know that the value $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$ holds true. And they get stuck just before a few steps to finish their answer. Thus it is recommended to learn all the properties of complex numbers to solve this type of problem easily and completely.
Complete step-by-step answer:
It is given in the question that $\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3$ also a relation is given - $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$ and then we have to find the value of $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|$. Now, we know that for any complex number z, $z\overline{z}={{\left| z \right|}^{2}}$ thus, from the formula we get, ${{z}_{1}}\overline{{{z}_{1}}}={{\left| 1 \right|}^{2}}=1$ and ${{z}_{2}}\overline{{{z}_{2}}}={{\left| 2 \right|}^{2}}=4$ and ${{z}_{3}}\overline{{{z}_{3}}}={{\left| 3 \right|}^{2}}=9$. Now, we will replace the 9 as ${{z}_{3}}\overline{{{z}_{3}}}$ , 4 as ${{z}_{2}}\overline{{{z}_{2}}}$ and 1 as \[{{z}_{1}}\overline{{{z}_{1}}}\] in the given relation $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$,
We get - $\left| {{z}_{3}}\overline{{{z}_{3}}}{{z}_{1}}{{z}_{2}}+{{z}_{1}}{{z}_{3}}{{z}_{2}}\overline{{{z}_{2}}}+{{z}_{2}}{{z}_{3}}{{z}_{1}}\overline{{{z}_{1}}} \right|=12$ taking ${{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}}$ common in LHS we get - $\left| {{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$, Solving further, we get $\left| {{z}_{1}} \right|\centerdot \left| {{z}_{2}} \right|\centerdot \left| {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$ we have ${{z}_{1}}=1,{{z}_{2}}=2$ and ${{z}_{3}}=3$, on putting these values in the above equation we get $1\cdot 2\cdot 3\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$, that is, $6\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$ or $\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\dfrac{12}{6}=2$.
Now, we know that $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$, therefore we can say that \[\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2\] or we get the value of expression $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2$ thus option a) is the correct answer.
Note: Usually student get stuck in the last step because most of the student don’t know that the value $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$ holds true. And they get stuck just before a few steps to finish their answer. Thus it is recommended to learn all the properties of complex numbers to solve this type of problem easily and completely.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
