
If $\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3$ and $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$ then the value of $\left| {{z}_{1}}+{{z}_{2}}+{{z}_{3}} \right|$ is equal to ?
a)2
b)3
c)4
d)6
Answer
610.8k+ views
Hint: We will use two formula to solve this question $z\overline{z}={{\left| z \right|}^{2}}$ also, $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$. First we will solve the given relation $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$, to get the value of $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|$ and then from this we will find the value of $\left| {{z}_{1}}+{{z}_{2}}+{{z}_{3}} \right|$, using the second relation.
Complete step-by-step answer:
It is given in the question that $\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3$ also a relation is given - $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$ and then we have to find the value of $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|$. Now, we know that for any complex number z, $z\overline{z}={{\left| z \right|}^{2}}$ thus, from the formula we get, ${{z}_{1}}\overline{{{z}_{1}}}={{\left| 1 \right|}^{2}}=1$ and ${{z}_{2}}\overline{{{z}_{2}}}={{\left| 2 \right|}^{2}}=4$ and ${{z}_{3}}\overline{{{z}_{3}}}={{\left| 3 \right|}^{2}}=9$. Now, we will replace the 9 as ${{z}_{3}}\overline{{{z}_{3}}}$ , 4 as ${{z}_{2}}\overline{{{z}_{2}}}$ and 1 as \[{{z}_{1}}\overline{{{z}_{1}}}\] in the given relation $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$,
We get - $\left| {{z}_{3}}\overline{{{z}_{3}}}{{z}_{1}}{{z}_{2}}+{{z}_{1}}{{z}_{3}}{{z}_{2}}\overline{{{z}_{2}}}+{{z}_{2}}{{z}_{3}}{{z}_{1}}\overline{{{z}_{1}}} \right|=12$ taking ${{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}}$ common in LHS we get - $\left| {{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$, Solving further, we get $\left| {{z}_{1}} \right|\centerdot \left| {{z}_{2}} \right|\centerdot \left| {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$ we have ${{z}_{1}}=1,{{z}_{2}}=2$ and ${{z}_{3}}=3$, on putting these values in the above equation we get $1\cdot 2\cdot 3\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$, that is, $6\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$ or $\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\dfrac{12}{6}=2$.
Now, we know that $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$, therefore we can say that \[\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2\] or we get the value of expression $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2$ thus option a) is the correct answer.
Note: Usually student get stuck in the last step because most of the student don’t know that the value $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$ holds true. And they get stuck just before a few steps to finish their answer. Thus it is recommended to learn all the properties of complex numbers to solve this type of problem easily and completely.
Complete step-by-step answer:
It is given in the question that $\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3$ also a relation is given - $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$ and then we have to find the value of $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|$. Now, we know that for any complex number z, $z\overline{z}={{\left| z \right|}^{2}}$ thus, from the formula we get, ${{z}_{1}}\overline{{{z}_{1}}}={{\left| 1 \right|}^{2}}=1$ and ${{z}_{2}}\overline{{{z}_{2}}}={{\left| 2 \right|}^{2}}=4$ and ${{z}_{3}}\overline{{{z}_{3}}}={{\left| 3 \right|}^{2}}=9$. Now, we will replace the 9 as ${{z}_{3}}\overline{{{z}_{3}}}$ , 4 as ${{z}_{2}}\overline{{{z}_{2}}}$ and 1 as \[{{z}_{1}}\overline{{{z}_{1}}}\] in the given relation $\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12$,
We get - $\left| {{z}_{3}}\overline{{{z}_{3}}}{{z}_{1}}{{z}_{2}}+{{z}_{1}}{{z}_{3}}{{z}_{2}}\overline{{{z}_{2}}}+{{z}_{2}}{{z}_{3}}{{z}_{1}}\overline{{{z}_{1}}} \right|=12$ taking ${{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}}$ common in LHS we get - $\left| {{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$, Solving further, we get $\left| {{z}_{1}} \right|\centerdot \left| {{z}_{2}} \right|\centerdot \left| {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$ we have ${{z}_{1}}=1,{{z}_{2}}=2$ and ${{z}_{3}}=3$, on putting these values in the above equation we get $1\cdot 2\cdot 3\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$, that is, $6\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12$ or $\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\dfrac{12}{6}=2$.
Now, we know that $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$, therefore we can say that \[\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2\] or we get the value of expression $\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2$ thus option a) is the correct answer.
Note: Usually student get stuck in the last step because most of the student don’t know that the value $\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}$ holds true. And they get stuck just before a few steps to finish their answer. Thus it is recommended to learn all the properties of complex numbers to solve this type of problem easily and completely.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

