
If $\left| {z - 1} \right| + \left| {z + 3} \right| \leqslant 8$, then the range of values of $\left| {z - 4} \right|$
$\left( A \right)\left[ {1,7} \right]$
$\left( B \right)\left[ {1,8} \right]$
$\left( C \right)\left[ {1,9} \right]$
$\left( D \right)\left[ {2,5} \right]$
Answer
598.5k+ views
Hint – In this particular type of question use the concept that in a triangle if ${z_1}{\text{ and }}{z_2}$ are two complex numbers then modulus of the sum of the two complex number is always less than or equal to the sum of the individual modulus of the complex numbers so use this concept to reach the solution of the question.
Complete step by step solution:
As we know that in a triangle if ${z_1}{\text{ and }}{z_2}$ are two complex numbers then modulus of the sum of the two complex number is always less than or equal to the sum of the individual modulus of the complex numbers.
$ \Rightarrow \left| {{z_1} + {z_2}} \right| \leqslant \left| {{z_1}} \right| + \left| {{z_2}} \right|$................. (1)
Given equation:
$\left| {z - 1} \right| + \left| {z + 3} \right| \leqslant 8$................... (2)
Let, ${z_1} = z - 1$ and ${z_2} = z + 3$
Now from equation (1) and (2) we have,
$ \Rightarrow \left| {z - 1 + z + 3} \right| \leqslant 8$
$ \Rightarrow \left| {2z + 2} \right| \leqslant 8$
2 is constant so it can come outside the modulus so we have,
$ \Rightarrow 2\left| {z + 1} \right| \leqslant 8$
Now divide by 2 throughout we have,
$ \Rightarrow \left| {z + 1} \right| \leqslant 4$..................... (3)
Now,
$\left| {z + 1} \right| \leqslant \left| z \right| + \left| 1 \right|$
$ \Rightarrow \left| {z + 1} \right| \leqslant \left| z \right| + 1$..................... (4)
Now from equation (3) and (4) we have,
$ \Rightarrow \left| z \right| + 1 = 4$
$ \Rightarrow \left| z \right| = \left( {4 - 1} \right)$
$ \Rightarrow \left| z \right| = 3$................ (5)
So from equation (5), value of z is 3
Now the maximum value of $\left| {{z_1} + {z_2}} \right| = \left| {\left| {{z_1}} \right| + \left| {{z_2}} \right|} \right|$
And the minimum value of $\left| {{z_1} + {z_2}} \right| = \left| {\left| {{z_1}} \right| - \left| {{z_2}} \right|} \right|$
So the maximum value of $\left| {z - 4} \right| = \left| {\left| z \right| + \left| 4 \right|} \right|$
And the minimum value of $\left| {z - 4} \right| = \left| {\left| z \right| - \left| 4 \right|} \right|$
In both of the cases we have to put the value of z.
Now substitute the values we have,
So the maximum value of $\left| {z - 4} \right| = \left| {3 + 4} \right| = 7$
And the minimum value of $\left| {z - 4} \right| = \left| {3 - 4} \right| = \left| { - 1} \right| = 1$
So the range of values of $\left| {z - 4} \right|$ is
$ \Rightarrow 1 < \left| {z - 4} \right| < 7$
So the range is [1, 7].
So this is the required answer.
Hence option (A) is the correct answer.
Note – Whenever we face such types of questions the key concept we have to remember is that always recall that the maximum value of $\left| {{z_1} + {z_2}} \right|$ is $\left| {\left| {{z_1}} \right| + \left| {{z_2}} \right|} \right|$ and the minimum value of $\left| {{z_1} + {z_2}} \right|$ is $\left| {\left| {{z_1}} \right| - \left| {{z_2}} \right|} \right|$ so first find out the values of ${z_1}{\text{ and }}{{\text{z}}_2}$ and substitute these values in the above written formulas and simplify we will get the required answer.
Complete step by step solution:
As we know that in a triangle if ${z_1}{\text{ and }}{z_2}$ are two complex numbers then modulus of the sum of the two complex number is always less than or equal to the sum of the individual modulus of the complex numbers.
$ \Rightarrow \left| {{z_1} + {z_2}} \right| \leqslant \left| {{z_1}} \right| + \left| {{z_2}} \right|$................. (1)
Given equation:
$\left| {z - 1} \right| + \left| {z + 3} \right| \leqslant 8$................... (2)
Let, ${z_1} = z - 1$ and ${z_2} = z + 3$
Now from equation (1) and (2) we have,
$ \Rightarrow \left| {z - 1 + z + 3} \right| \leqslant 8$
$ \Rightarrow \left| {2z + 2} \right| \leqslant 8$
2 is constant so it can come outside the modulus so we have,
$ \Rightarrow 2\left| {z + 1} \right| \leqslant 8$
Now divide by 2 throughout we have,
$ \Rightarrow \left| {z + 1} \right| \leqslant 4$..................... (3)
Now,
$\left| {z + 1} \right| \leqslant \left| z \right| + \left| 1 \right|$
$ \Rightarrow \left| {z + 1} \right| \leqslant \left| z \right| + 1$..................... (4)
Now from equation (3) and (4) we have,
$ \Rightarrow \left| z \right| + 1 = 4$
$ \Rightarrow \left| z \right| = \left( {4 - 1} \right)$
$ \Rightarrow \left| z \right| = 3$................ (5)
So from equation (5), value of z is 3
Now the maximum value of $\left| {{z_1} + {z_2}} \right| = \left| {\left| {{z_1}} \right| + \left| {{z_2}} \right|} \right|$
And the minimum value of $\left| {{z_1} + {z_2}} \right| = \left| {\left| {{z_1}} \right| - \left| {{z_2}} \right|} \right|$
So the maximum value of $\left| {z - 4} \right| = \left| {\left| z \right| + \left| 4 \right|} \right|$
And the minimum value of $\left| {z - 4} \right| = \left| {\left| z \right| - \left| 4 \right|} \right|$
In both of the cases we have to put the value of z.
Now substitute the values we have,
So the maximum value of $\left| {z - 4} \right| = \left| {3 + 4} \right| = 7$
And the minimum value of $\left| {z - 4} \right| = \left| {3 - 4} \right| = \left| { - 1} \right| = 1$
So the range of values of $\left| {z - 4} \right|$ is
$ \Rightarrow 1 < \left| {z - 4} \right| < 7$
So the range is [1, 7].
So this is the required answer.
Hence option (A) is the correct answer.
Note – Whenever we face such types of questions the key concept we have to remember is that always recall that the maximum value of $\left| {{z_1} + {z_2}} \right|$ is $\left| {\left| {{z_1}} \right| + \left| {{z_2}} \right|} \right|$ and the minimum value of $\left| {{z_1} + {z_2}} \right|$ is $\left| {\left| {{z_1}} \right| - \left| {{z_2}} \right|} \right|$ so first find out the values of ${z_1}{\text{ and }}{{\text{z}}_2}$ and substitute these values in the above written formulas and simplify we will get the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

