
If $\left[ x \right]$ is an integer function and $\left\{ x \right\}=x-\left[ x \right]$ then $f\left( x \right)=\left[ x \right]+\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}$
A. $4x$
B. $2x$
C. $4\left[ x \right]+100\left\{ x \right\}$
D. $x$
Answer
499.5k+ views
Hint: We first try to simplify the summation part where we break the fraction part with respect to the constants and the integer part. We find that the summation becomes independent of $r$. We get the rest added and find the final solution.
Complete step by step answer:
We first simplify the expression $\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}$.
As $\dfrac{1}{100}$ is constant, we get $\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}=\dfrac{1}{100}\sum\limits_{r=1}^{100}{\left\{ x+r \right\}}$.
As $\left\{ x \right\}=x-\left[ x \right]$, we can write $\left\{ x+r \right\}=\left( x+r \right)-\left[ x+r \right]$.
The values of $r$ are integer, therefore,
$\left\{ x+r \right\}=x+r-\left[ x \right]-r=x-\left[ x \right]$
The summation becomes independent of $r$.So,
\[\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}=\dfrac{1}{100}\sum\limits_{r=1}^{100}{\left\{ x+r \right\}} \\
\Rightarrow \sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}=\dfrac{100\left( x-\left[ x \right] \right)}{100}=x-\left[ x \right]\]
So, $f\left( x \right)=\left[ x \right]+\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}$
$\Rightarrow f\left( x \right)=\left[ x \right]+x-\left[ x \right] \\
\therefore f\left( x \right)=x$
Hence, the correct option is D.
Note: The addition of integer for the box function omits the integer as the integral part of the given number is equal to itself. Therefore, we can always take away the maximum possible integer from the main number to find the solution.
Complete step by step answer:
We first simplify the expression $\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}$.
As $\dfrac{1}{100}$ is constant, we get $\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}=\dfrac{1}{100}\sum\limits_{r=1}^{100}{\left\{ x+r \right\}}$.
As $\left\{ x \right\}=x-\left[ x \right]$, we can write $\left\{ x+r \right\}=\left( x+r \right)-\left[ x+r \right]$.
The values of $r$ are integer, therefore,
$\left\{ x+r \right\}=x+r-\left[ x \right]-r=x-\left[ x \right]$
The summation becomes independent of $r$.So,
\[\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}=\dfrac{1}{100}\sum\limits_{r=1}^{100}{\left\{ x+r \right\}} \\
\Rightarrow \sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}=\dfrac{100\left( x-\left[ x \right] \right)}{100}=x-\left[ x \right]\]
So, $f\left( x \right)=\left[ x \right]+\sum\limits_{r=1}^{100}{\dfrac{\left\{ x+r \right\}}{100}}$
$\Rightarrow f\left( x \right)=\left[ x \right]+x-\left[ x \right] \\
\therefore f\left( x \right)=x$
Hence, the correct option is D.
Note: The addition of integer for the box function omits the integer as the integral part of the given number is equal to itself. Therefore, we can always take away the maximum possible integer from the main number to find the solution.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

