
If $\left[ x \right]$ donates the integral part of x for the real value of x, then the value of
$\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{100} \right]+\left[ \dfrac{1}{4}+\dfrac{3}{200} \right]+......................+\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]$ is $10a$. Find a.
Answer
602.4k+ views
Hint: $\left[ x \right]$ donates the integral part x for real values of x mean that if $x=n+f$ where f is the fractional part and n is the integral part.
$\left[ x \right]=n$
For example $\left[ 1.5 \right]=1$
For $0\le x<1\text{ }\left[ x \right]=0$
.And \[1\le x<2\text{ }\left[ x \right]=1\text{ }............\text{ and so on }......\].
Complete step-by-step answer:
\[\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right].................\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]=10a\]now we have,
\[\left[ \dfrac{1}{4}+\dfrac{3}{4} \right]=1\Rightarrow \left[ \dfrac{1}{4}+\dfrac{150}{200} \right]=1\]
Similarly, \[\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]=\left[ 1.005 \right]=1\]
So we can write nth term of the series in the form \[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ 0}\le \text{m}\le 199\text{ m}\varepsilon \text{N}\]
Here, when \[m<150\]
\[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 0}\] because \[\dfrac{1}{4}+\dfrac{m}{200}<1\]
When \[m>150\]
\[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 1}\] as \[1\le \dfrac{1}{4}+\dfrac{M}{200}<2\]
So $\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right]+..............\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]+\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]+..........+\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]\Rightarrow $
$=0+0+0.............+1+1+........1$
$=50$ as then will be $50$term form $\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]$ to $\left[ \dfrac{1}{4}+\dfrac{191}{200} \right]$
But it is given that the sum of above term is $10a$
$10a=50$
$\Rightarrow a=5$
Note: Thus one certain properties of $\left[ x \right]$where it donates the integral part of x
$\left[ {{x}_{1}} \right]+\left[ {{x}_{2}} \right]\ne \left[ {{x}_{1}}+{{x}_{2}} \right]$
For example: ${{x}_{1}}=1.5$
${{x}_{2}}=2.5$
$\left[ {{x}_{1}} \right]=\left[ 1.5 \right]=1$
$\left[ {{x}_{2}} \right]=\left[ 2.5 \right]=2$
$\left[ {{x}_{1}}+{{x}_{2}} \right]=3$
But $\left[ {{x}_{1}}+{{x}_{2}} \right]=\left[ 1.5+2.5 \right]=4$
Hence it does not follow $f(a)+f(6)=f(a+6)$
$\therefore $ it is not a function.
$\left[ x \right]=n$
For example $\left[ 1.5 \right]=1$
For $0\le x<1\text{ }\left[ x \right]=0$
.And \[1\le x<2\text{ }\left[ x \right]=1\text{ }............\text{ and so on }......\].
Complete step-by-step answer:
\[\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right].................\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]=10a\]now we have,
\[\left[ \dfrac{1}{4}+\dfrac{3}{4} \right]=1\Rightarrow \left[ \dfrac{1}{4}+\dfrac{150}{200} \right]=1\]
Similarly, \[\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]=\left[ 1.005 \right]=1\]
So we can write nth term of the series in the form \[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ 0}\le \text{m}\le 199\text{ m}\varepsilon \text{N}\]
Here, when \[m<150\]
\[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 0}\] because \[\dfrac{1}{4}+\dfrac{m}{200}<1\]
When \[m>150\]
\[\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 1}\] as \[1\le \dfrac{1}{4}+\dfrac{M}{200}<2\]
So $\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right]+..............\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]+\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]+..........+\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]\Rightarrow $
$=0+0+0.............+1+1+........1$
$=50$ as then will be $50$term form $\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]$ to $\left[ \dfrac{1}{4}+\dfrac{191}{200} \right]$
But it is given that the sum of above term is $10a$
$10a=50$
$\Rightarrow a=5$
Note: Thus one certain properties of $\left[ x \right]$where it donates the integral part of x
$\left[ {{x}_{1}} \right]+\left[ {{x}_{2}} \right]\ne \left[ {{x}_{1}}+{{x}_{2}} \right]$
For example: ${{x}_{1}}=1.5$
${{x}_{2}}=2.5$
$\left[ {{x}_{1}} \right]=\left[ 1.5 \right]=1$
$\left[ {{x}_{2}} \right]=\left[ 2.5 \right]=2$
$\left[ {{x}_{1}}+{{x}_{2}} \right]=3$
But $\left[ {{x}_{1}}+{{x}_{2}} \right]=\left[ 1.5+2.5 \right]=4$
Hence it does not follow $f(a)+f(6)=f(a+6)$
$\therefore $ it is not a function.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

