
If $ {\left( {x + iy} \right)^5} = p + iq $ , then prove that $ {\left( {y + ix} \right)^5} = q + ip. $
Answer
417.9k+ views
Hint: The complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if $ a $ and $ b $ are real, then) the then the complex conjugate of $ \left( {a + bi} \right) $ is equal to $ \left( {a - bi} \right) $ .
Complete step-by-step answer:
Given equation in the question is,
$ \Rightarrow $ $ {\left( {x + iy} \right)^5} = p + iq $
We can write it as,
$
\Rightarrow \dfrac{1}{{{{\left( {x + iy} \right)}^5}}} = \dfrac{1}{{(p + iq)}} \\
\Rightarrow \dfrac{1}{{{{(x + iy)}^5}}} = p - iq \\
\Rightarrow {\left( {x - iy} \right)^5} = p - iq \;
$
Multiply by $ {i^5} $ on both the sides,
$
\Rightarrow {i^5}{(x - iy)^5} = p{i^5} - q{i^6} \\
\Rightarrow {(x{i^{}} - {i^2}y)^5} = pi + q \\
\Rightarrow {(y + ix)^5} = pi + q. \;
$
Hence proved.
Note: $ \Rightarrow $ Each of two complex numbers having their real parts identical and their imaginary parts of equal magnitude but opposite sign.
$ \Rightarrow $ Conjugate of the conjugate of a complex number $ Z $ is the complex number itself.
$ \Rightarrow $ Conjugate of the sum of two complex numbers $ {z_1},{z_2} $ is the sum of their conjugates.
\[\overline {z_1 + z_2} = \bar z_1 + \bar z_2.\]
Complete step-by-step answer:
Given equation in the question is,
$ \Rightarrow $ $ {\left( {x + iy} \right)^5} = p + iq $
We can write it as,
$
\Rightarrow \dfrac{1}{{{{\left( {x + iy} \right)}^5}}} = \dfrac{1}{{(p + iq)}} \\
\Rightarrow \dfrac{1}{{{{(x + iy)}^5}}} = p - iq \\
\Rightarrow {\left( {x - iy} \right)^5} = p - iq \;
$
Multiply by $ {i^5} $ on both the sides,
$
\Rightarrow {i^5}{(x - iy)^5} = p{i^5} - q{i^6} \\
\Rightarrow {(x{i^{}} - {i^2}y)^5} = pi + q \\
\Rightarrow {(y + ix)^5} = pi + q. \;
$
Hence proved.
Note: $ \Rightarrow $ Each of two complex numbers having their real parts identical and their imaginary parts of equal magnitude but opposite sign.
$ \Rightarrow $ Conjugate of the conjugate of a complex number $ Z $ is the complex number itself.
$ \Rightarrow $ Conjugate of the sum of two complex numbers $ {z_1},{z_2} $ is the sum of their conjugates.
\[\overline {z_1 + z_2} = \bar z_1 + \bar z_2.\]
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
