
If \[{{\left( x+iy \right)}^{3}}=u+iv\] then show that \[\dfrac{u}{x}+\dfrac{v}{y}=4\left( {{x}^{2}}-{{y}^{2}} \right)\].
Answer
612.6k+ views
Hint: In the above question we will expand the cubic expression and by comparing both sides of equality, we will get the value of u and v. The formula to expand a cubic expression is as follows:
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)\]
Complete step-by-step answer:
Also, we will use the property of iota \[(i)\] which is as follows:
\[\begin{align}
& {{i}^{4n+2}}=-1 \\
& {{i}^{4n+3}}=-i \\
\end{align}\]
We have been given \[{{\left( x+iy \right)}^{3}}=u+iv\] and we have to prove that \[\dfrac{u}{x}+\dfrac{v}{y}=4\left( {{x}^{2}}-{{y}^{2}} \right)\].
\[{{\left( x+iy \right)}^{3}}=u+iv\]
On applying the formula \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)\] to the above expression, we get,
\[\begin{align}
& {{\left( x+iy \right)}^{3}}=u+iv \\
& {{x}^{3}}+{{\left( iy \right)}^{3}}+3xyi\left( x+iy \right)=u+iv \\
& {{x}^{3}}+{{i}^{3}}{{y}^{3}}+3{{x}^{2}}yi+3x{{y}^{2}}{{i}^{2}}=u+iv \\
\end{align}\]
Now \[{{i}^{3}}\] can be written in the form of \[{{i}^{\left( 4\times 0+3 \right)}}\].
We know that,
\[\begin{align}
& {{i}^{\left( 4n+3 \right)}}=-i \\
& {{i}^{\left( 4\times 0+3 \right)}}={{i}^{3}}=-i \\
\end{align}\]
Also, \[{{i}^{2}}\] can be written in the form of \[{{i}^{\left( 4\times 0+3 \right)}}\].
We know that,
\[\begin{align}
& {{i}^{\left( 4n+2 \right)}}=-1 \\
& {{i}^{\left( 4\times 0+2 \right)}}={{i}^{2}}=-1 \\
\end{align}\]
On substituting the values of \[{{i}^{2}}\] and \[{{i}^{3}}\] in the above expressions, we get,
\[\begin{align}
& {{x}^{3}}-{{y}^{3}}i+3{{x}^{2}}yi-3x{{y}^{2}}=u+iv \\
& {{x}^{3}}-3x{{y}^{2}}+\left( 3{{x}^{2}}y-{{y}^{3}} \right)i=u+iv \\
\end{align}\]
On comparing both the sides of equality we get,
\[u={{x}^{3}}-3x{{y}^{2}}\] and \[v=3{{x}^{2}}y-{{y}^{3}}\].
Now we have to prove \[\dfrac{u}{x}+\dfrac{v}{y}=4\left( {{x}^{2}}-{{y}^{2}} \right)\].
Taking left hand side of the expression, we get,
\[\dfrac{u}{x}+\dfrac{v}{y}\]
On substituting the values of u and v, we get,
\[\begin{align}
& \dfrac{u}{x}+\dfrac{v}{y}=\dfrac{{{x}^{3}}-3x{{y}^{2}}}{x}+\dfrac{3{{x}^{2}}y-{{y}^{3}}}{y}=\dfrac{x\left( {{x}^{2}}-3{{y}^{2}} \right)}{x}+\dfrac{y\left( 3{{x}^{2}}-{{y}^{2}} \right)}{y} \\
& ={{x}^{2}}-3{{y}^{2}}+3{{x}^{2}}-{{y}^{2}}=4{{x}^{2}}-4{{y}^{2}}=4\left( {{x}^{2}}-{{y}^{2}} \right) \\
\end{align}\]
Hence, it is proved that \[\dfrac{u}{x}+\dfrac{v}{y}=4\left( {{x}^{2}}-{{y}^{2}} \right)\].
Note: Be careful while expanding the expression \[{{\left( x+iy \right)}^{3}}\], using the cubic formula, don’t miss the term ‘i' while expanding it.
Also remember that two imaginary numbers are equal if and only if the real part of another number and similarly for the imaginary part also.
\[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)\]
Complete step-by-step answer:
Also, we will use the property of iota \[(i)\] which is as follows:
\[\begin{align}
& {{i}^{4n+2}}=-1 \\
& {{i}^{4n+3}}=-i \\
\end{align}\]
We have been given \[{{\left( x+iy \right)}^{3}}=u+iv\] and we have to prove that \[\dfrac{u}{x}+\dfrac{v}{y}=4\left( {{x}^{2}}-{{y}^{2}} \right)\].
\[{{\left( x+iy \right)}^{3}}=u+iv\]
On applying the formula \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)\] to the above expression, we get,
\[\begin{align}
& {{\left( x+iy \right)}^{3}}=u+iv \\
& {{x}^{3}}+{{\left( iy \right)}^{3}}+3xyi\left( x+iy \right)=u+iv \\
& {{x}^{3}}+{{i}^{3}}{{y}^{3}}+3{{x}^{2}}yi+3x{{y}^{2}}{{i}^{2}}=u+iv \\
\end{align}\]
Now \[{{i}^{3}}\] can be written in the form of \[{{i}^{\left( 4\times 0+3 \right)}}\].
We know that,
\[\begin{align}
& {{i}^{\left( 4n+3 \right)}}=-i \\
& {{i}^{\left( 4\times 0+3 \right)}}={{i}^{3}}=-i \\
\end{align}\]
Also, \[{{i}^{2}}\] can be written in the form of \[{{i}^{\left( 4\times 0+3 \right)}}\].
We know that,
\[\begin{align}
& {{i}^{\left( 4n+2 \right)}}=-1 \\
& {{i}^{\left( 4\times 0+2 \right)}}={{i}^{2}}=-1 \\
\end{align}\]
On substituting the values of \[{{i}^{2}}\] and \[{{i}^{3}}\] in the above expressions, we get,
\[\begin{align}
& {{x}^{3}}-{{y}^{3}}i+3{{x}^{2}}yi-3x{{y}^{2}}=u+iv \\
& {{x}^{3}}-3x{{y}^{2}}+\left( 3{{x}^{2}}y-{{y}^{3}} \right)i=u+iv \\
\end{align}\]
On comparing both the sides of equality we get,
\[u={{x}^{3}}-3x{{y}^{2}}\] and \[v=3{{x}^{2}}y-{{y}^{3}}\].
Now we have to prove \[\dfrac{u}{x}+\dfrac{v}{y}=4\left( {{x}^{2}}-{{y}^{2}} \right)\].
Taking left hand side of the expression, we get,
\[\dfrac{u}{x}+\dfrac{v}{y}\]
On substituting the values of u and v, we get,
\[\begin{align}
& \dfrac{u}{x}+\dfrac{v}{y}=\dfrac{{{x}^{3}}-3x{{y}^{2}}}{x}+\dfrac{3{{x}^{2}}y-{{y}^{3}}}{y}=\dfrac{x\left( {{x}^{2}}-3{{y}^{2}} \right)}{x}+\dfrac{y\left( 3{{x}^{2}}-{{y}^{2}} \right)}{y} \\
& ={{x}^{2}}-3{{y}^{2}}+3{{x}^{2}}-{{y}^{2}}=4{{x}^{2}}-4{{y}^{2}}=4\left( {{x}^{2}}-{{y}^{2}} \right) \\
\end{align}\]
Hence, it is proved that \[\dfrac{u}{x}+\dfrac{v}{y}=4\left( {{x}^{2}}-{{y}^{2}} \right)\].
Note: Be careful while expanding the expression \[{{\left( x+iy \right)}^{3}}\], using the cubic formula, don’t miss the term ‘i' while expanding it.
Also remember that two imaginary numbers are equal if and only if the real part of another number and similarly for the imaginary part also.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

