
If \[\left[ {{{\sin }^{ - 1}}\left( {{{\cos }^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)} \right)} \right] = 1,\] where $\left[ . \right]$ denotes the greatest integer function then the values of x are
A. $\left[ {\tan \sin \cos 1,\tan \sin \cos \sin 1} \right]$
B. $\left( {\tan \sin \cos 1,\tan \sin \cos \sin 1} \right)$
C. $\left[ { - 1,1} \right]$
D. $\left[ {\sin \cos \tan 1,\sin \cos \sin \tan 1} \right]$
Answer
584.7k+ views
Hint- Here in this problem the concept of inverse trigonometry and greatest function property has been used which will be explained first then accordingly we will come to the answer of the question. Greatest Integer function is defined as when the input is provided to the function the output is the integer which is less than or equal to the input provided. It is denoted by $\left[ { } \right]$
Complete step-by-step answer:
For example
$\left[ {3.5} \right] = 3$
The given function is
\[\left[ {{{\sin }^{ - 1}}\left( {{{\cos }^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)} \right)} \right] = 1\]
Now in order to solve, we will let define some variables
Let $\theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)$
Substitute this value in the above equation
\[\left[ {{{\sin }^{ - 1}}\theta } \right] = 1\]
Also we know that from the definition of sin
$1 \leqslant \theta \leqslant \dfrac{\pi }{2}$
Therefor the above equation becomes
$
\sin 1 \leqslant \theta \leqslant \sin \dfrac{\pi }{2} \\
\sin 1 \leqslant \theta \leqslant 1 \\
$
Now, $\theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)$
Let $\phi = {\sin ^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)$
Therefore
$
\theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right) \\
\theta = {\cos ^{ - 1}}\phi \\
$
Substitute the value of $\theta $ in the equation $\sin 1 \leqslant \theta \leqslant 1$
$
\sin 1 \leqslant {\cos ^{ - 1}}\phi \leqslant 1 \\
\cos \sin 1 \leqslant \phi \leqslant \cos 1 \\
$
Again let $\beta = {\tan ^{ - 1}}x$
Therefore $\phi = {\sin ^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)$
$\phi = {\sin ^{ - 1}}\beta $
Substitute the value of $\phi $ in equation $\cos \sin 1 \leqslant \phi \leqslant \cos 1$
$
\cos \sin 1 \leqslant {\sin ^{ - 1}}\beta \leqslant \cos 1 \\
\sin \cos \sin 1 \leqslant \beta \leqslant \sin \cos 1 \\
$
As we let $\beta = {\tan ^{ - 1}}x$ substitute it in the above equation we get
$
\sin \cos \sin 1 \leqslant {\tan ^{ - 1}}x \leqslant \sin \cos 1 \\
\tan \sin \cos \sin 1 \leqslant x \leqslant \tan \sin \cos 1 \\
$
Therefore x lies between $\tan \sin \cos \sin 1 \leqslant x \leqslant \tan \sin \cos 1$
Hence the correct option is A.
Additional information-
The domain of function is all the values that are allowed as input in the function and range of the function is all the values that a function gives as an output.
Note- In order to solve these types of questions, you need to have a good concept of domain and range of a function. In the above question we define the range of arcsin and then proceed to solve the problem step by step. Learn the domain and range of all trigonometric functions and the concept of solving inequality problems.
Complete step-by-step answer:
For example
$\left[ {3.5} \right] = 3$
The given function is
\[\left[ {{{\sin }^{ - 1}}\left( {{{\cos }^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)} \right)} \right] = 1\]
Now in order to solve, we will let define some variables
Let $\theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)$
Substitute this value in the above equation
\[\left[ {{{\sin }^{ - 1}}\theta } \right] = 1\]
Also we know that from the definition of sin
$1 \leqslant \theta \leqslant \dfrac{\pi }{2}$
Therefor the above equation becomes
$
\sin 1 \leqslant \theta \leqslant \sin \dfrac{\pi }{2} \\
\sin 1 \leqslant \theta \leqslant 1 \\
$
Now, $\theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)$
Let $\phi = {\sin ^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)$
Therefore
$
\theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right) \\
\theta = {\cos ^{ - 1}}\phi \\
$
Substitute the value of $\theta $ in the equation $\sin 1 \leqslant \theta \leqslant 1$
$
\sin 1 \leqslant {\cos ^{ - 1}}\phi \leqslant 1 \\
\cos \sin 1 \leqslant \phi \leqslant \cos 1 \\
$
Again let $\beta = {\tan ^{ - 1}}x$
Therefore $\phi = {\sin ^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)$
$\phi = {\sin ^{ - 1}}\beta $
Substitute the value of $\phi $ in equation $\cos \sin 1 \leqslant \phi \leqslant \cos 1$
$
\cos \sin 1 \leqslant {\sin ^{ - 1}}\beta \leqslant \cos 1 \\
\sin \cos \sin 1 \leqslant \beta \leqslant \sin \cos 1 \\
$
As we let $\beta = {\tan ^{ - 1}}x$ substitute it in the above equation we get
$
\sin \cos \sin 1 \leqslant {\tan ^{ - 1}}x \leqslant \sin \cos 1 \\
\tan \sin \cos \sin 1 \leqslant x \leqslant \tan \sin \cos 1 \\
$
Therefore x lies between $\tan \sin \cos \sin 1 \leqslant x \leqslant \tan \sin \cos 1$
Hence the correct option is A.
Additional information-
The domain of function is all the values that are allowed as input in the function and range of the function is all the values that a function gives as an output.
Note- In order to solve these types of questions, you need to have a good concept of domain and range of a function. In the above question we define the range of arcsin and then proceed to solve the problem step by step. Learn the domain and range of all trigonometric functions and the concept of solving inequality problems.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

