
If \[\left| {\overline a } \right| = \left| {\overline b } \right| = 1\] and $\left| {\overline a + \overline b } \right| = \sqrt 3 $ , then the value of $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right)$ is
A.-21
B. \[\dfrac{{ - 21}}{2}\]
C.21
D. \[\dfrac{{21}}{2}\]
Answer
585.3k+ views
Hint: First find the product $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right)$ .
Now, \[\left| {\overline a } \right| = \left| {\overline b } \right| = 1 \Rightarrow {\left| {\overline a } \right|^2} = {\left| {\overline b } \right|^2} = 1\] .
Thus, using the square of the equation $\left| {\overline a + \overline b } \right| = \sqrt 3 $ , find \[\left| {\overline a } \right|\left| {\overline b } \right|\] .
Now, when we get all values of \[\left| {\overline a } \right|\left| {\overline b } \right|\] , \[{\left| {\overline a } \right|^2},{\left| {\overline b } \right|^2}\] , we will substitute them in the product of $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right)$ and get the correct answer.
Complete step-by-step answer:
It is known that, \[\left| {\overline a } \right| = \left| {\overline b } \right| = 1\] and $\left| {\overline a + \overline b } \right| = \sqrt 3 $ .
Now, expanding the product $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right)$ will give
$\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) = 6{\left| {\overline a } \right|^2} - 8\left| {\overline a \overline b } \right| + 15\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2}$
$ = 6{\left| {\overline a } \right|^2} + 7\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2}$ ... (1)
Also, $\left| {\overline a } \right| = 1$ and $\left| {\overline b } \right| = 1$
$\therefore {\left| {\overline a } \right|^2} = 1$ and ${\left| {\overline b } \right|^2} = 1$ .
And $\left| {\overline a + \overline b } \right| = \sqrt 3 $
\[
\therefore {\left| {\overline a + \overline b } \right|^2} = {\left( {\sqrt 3 } \right)^2} \\
\therefore {\left| {\overline a } \right|^2} + {\left| {\overline b } \right|^2} + 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 \\
\therefore 1 + 1 + 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 \\
\therefore 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 - 2 \\
\therefore \left| {\overline a } \right|\left| {\overline b } \right| = \dfrac{1}{2} \\
\]
Now, substituting the values ${\left| {\overline a } \right|^2} = 1$ , ${\left| {\overline b } \right|^2} = 1$ and \[\left| {\overline a } \right|\left| {\overline b } \right| = \dfrac{1}{2}\] in equation (1)
$
= 6\left( 1 \right) + 7\left( {\dfrac{1}{2}} \right) - 20\left( 1 \right) \\
= \dfrac{{12 + 7 - 40}}{2} \\
= - \dfrac{{21}}{2} \\
$
Thus, $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right)$ \[ = \dfrac{{ - 21}}{2}\] .
Option (B) is correct.
Note: The dot product of any two vectors can be found using normal multiplication method.
For example, here $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) = 6{\left| {\overline a } \right|^2} - 8\left| {\overline a \overline b } \right| + 15\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2}$ .
This is similar to finding $\left( {3a - 4b} \right)\left( {2a + 5b} \right) = 6{a^2} + 15ab - 8ab - 20{b^2}$
Now, \[\left| {\overline a } \right| = \left| {\overline b } \right| = 1 \Rightarrow {\left| {\overline a } \right|^2} = {\left| {\overline b } \right|^2} = 1\] .
Thus, using the square of the equation $\left| {\overline a + \overline b } \right| = \sqrt 3 $ , find \[\left| {\overline a } \right|\left| {\overline b } \right|\] .
Now, when we get all values of \[\left| {\overline a } \right|\left| {\overline b } \right|\] , \[{\left| {\overline a } \right|^2},{\left| {\overline b } \right|^2}\] , we will substitute them in the product of $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right)$ and get the correct answer.
Complete step-by-step answer:
It is known that, \[\left| {\overline a } \right| = \left| {\overline b } \right| = 1\] and $\left| {\overline a + \overline b } \right| = \sqrt 3 $ .
Now, expanding the product $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right)$ will give
$\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) = 6{\left| {\overline a } \right|^2} - 8\left| {\overline a \overline b } \right| + 15\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2}$
$ = 6{\left| {\overline a } \right|^2} + 7\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2}$ ... (1)
Also, $\left| {\overline a } \right| = 1$ and $\left| {\overline b } \right| = 1$
$\therefore {\left| {\overline a } \right|^2} = 1$ and ${\left| {\overline b } \right|^2} = 1$ .
And $\left| {\overline a + \overline b } \right| = \sqrt 3 $
\[
\therefore {\left| {\overline a + \overline b } \right|^2} = {\left( {\sqrt 3 } \right)^2} \\
\therefore {\left| {\overline a } \right|^2} + {\left| {\overline b } \right|^2} + 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 \\
\therefore 1 + 1 + 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 \\
\therefore 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 - 2 \\
\therefore \left| {\overline a } \right|\left| {\overline b } \right| = \dfrac{1}{2} \\
\]
Now, substituting the values ${\left| {\overline a } \right|^2} = 1$ , ${\left| {\overline b } \right|^2} = 1$ and \[\left| {\overline a } \right|\left| {\overline b } \right| = \dfrac{1}{2}\] in equation (1)
$
= 6\left( 1 \right) + 7\left( {\dfrac{1}{2}} \right) - 20\left( 1 \right) \\
= \dfrac{{12 + 7 - 40}}{2} \\
= - \dfrac{{21}}{2} \\
$
Thus, $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right)$ \[ = \dfrac{{ - 21}}{2}\] .
Option (B) is correct.
Note: The dot product of any two vectors can be found using normal multiplication method.
For example, here $\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) = 6{\left| {\overline a } \right|^2} - 8\left| {\overline a \overline b } \right| + 15\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2}$ .
This is similar to finding $\left( {3a - 4b} \right)\left( {2a + 5b} \right) = 6{a^2} + 15ab - 8ab - 20{b^2}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

