
If $\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\left( \operatorname{secA}-\operatorname{tanA} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)$ prove that each is equal to $\pm 1$.
Answer
615.6k+ views
Hint: Relate the identity ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$ with the identity ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ and express it as $\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1$. Put $\theta =A,B,C$ in this expression and multiply them and hence, use the given result in the problem to prove the given statement.
Complete step-by-step answer:
As we know the trigonometric identity related to $\sec ,\tan $ is given as
${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$ ………………… (i)
As, we know the algebraic identity of ${{a}^{2}}-{{b}^{2}}$ can be given as
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$………………… (ii)
So, applying the relation of equation (ii) with the equation (i), we get
$\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1$…………….(iii)
Now, coming to the question, it is given that the term $\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right),\left( \operatorname{secA}-\operatorname{tanA} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)$ are equal to each other, then we need to prove that both will be equal to$\pm 1$.
So, we have
$\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\left( \operatorname{secA}-\operatorname{tanA} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)$ ………(iv)
Now, put $\theta =A,B,C$ in the equation (iii) to get the equations related to equation (iv).
So, we get equations as
If $\theta =A$
$\left( \sec A-\tan A \right)\left( \sec A+\operatorname{tanA} \right)=1$………… (v)
If $\theta =B$
$\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)=1$ ………………(vi)
If $\theta =C$
$\left( \operatorname{secC}-\operatorname{tanC} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=1$ ………………(vii)
Now, we can multiply the equations (v), (vi) and (vii) and hence, we get
$\left( \sec A-\tan A \right)\left( \sec A+\operatorname{tanB} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=1$
Now, rearrange the terms just similar to equation (iv), hence, we can rewrite the above expression as
$\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]\left[ \left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right) \right]=1$ …………… (viii)
Now, we know that the values of terms written in big brackets of the above equations are equal from the equation (iv). So, we can replace one by another. So, we get
$\begin{align}
& \Rightarrow \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)\left( \sec A+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \sec C+\operatorname{tanC} \right)=1 \\
& \Rightarrow {{\left( \sec A+\tan A \right)}^{2}}{{\left( \operatorname{secB}+\operatorname{tanB} \right)}^{2}}{{\left( \operatorname{secC}+\operatorname{tanC} \right)}^{2}}=1 \\
& \Rightarrow {{\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]}^{2}}=1 \\
\end{align}$
And hence, taking square root to both sides, we get
$\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\pm 1$ …………….. (ix)
Now, we know that the above term in LHS will be equal to $\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)$ from the equation (iv). Hence, we get the values of both as
$\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)=\pm 1$
Hence, it is proved.
Note: Another approach for solving the question would be that we can multiply both sides by
$\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)\Rightarrow \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)$, And hence, we get
Let us multiply given relation by
$\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)$
Hence, we get
${{\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]}^{2}}=\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)\left( {{\sec }^{2}}B-{{\tan }^{2}}B \right)\left( {{\sec }^{2}}C-{{\tan }^{2}}C \right)$
Where, use $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$.
Now, replace R.H.S of above equation by 1, with using trigonometric identity
$\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)=1$.
One may change $\sec \theta $ to $\dfrac{1}{\cos \theta },tan\theta $ to $\dfrac{\sin \theta }{cos\theta }$ and hence, can use identity ${{\sin }^{2}}\theta +co{{s}^{2}}\theta =1$ . So, it can be another approach for the question.
Observing the identity ${{\sin }^{2}}\theta -co{{s}^{2}}\theta =1$ of the form of $\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1$ is the key point of the question.
Complete step-by-step answer:
As we know the trigonometric identity related to $\sec ,\tan $ is given as
${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$ ………………… (i)
As, we know the algebraic identity of ${{a}^{2}}-{{b}^{2}}$ can be given as
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$………………… (ii)
So, applying the relation of equation (ii) with the equation (i), we get
$\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1$…………….(iii)
Now, coming to the question, it is given that the term $\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right),\left( \operatorname{secA}-\operatorname{tanA} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)$ are equal to each other, then we need to prove that both will be equal to$\pm 1$.
So, we have
$\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\left( \operatorname{secA}-\operatorname{tanA} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)$ ………(iv)
Now, put $\theta =A,B,C$ in the equation (iii) to get the equations related to equation (iv).
So, we get equations as
If $\theta =A$
$\left( \sec A-\tan A \right)\left( \sec A+\operatorname{tanA} \right)=1$………… (v)
If $\theta =B$
$\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)=1$ ………………(vi)
If $\theta =C$
$\left( \operatorname{secC}-\operatorname{tanC} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=1$ ………………(vii)
Now, we can multiply the equations (v), (vi) and (vii) and hence, we get
$\left( \sec A-\tan A \right)\left( \sec A+\operatorname{tanB} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=1$
Now, rearrange the terms just similar to equation (iv), hence, we can rewrite the above expression as
$\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]\left[ \left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right) \right]=1$ …………… (viii)
Now, we know that the values of terms written in big brackets of the above equations are equal from the equation (iv). So, we can replace one by another. So, we get
$\begin{align}
& \Rightarrow \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)\left( \sec A+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \sec C+\operatorname{tanC} \right)=1 \\
& \Rightarrow {{\left( \sec A+\tan A \right)}^{2}}{{\left( \operatorname{secB}+\operatorname{tanB} \right)}^{2}}{{\left( \operatorname{secC}+\operatorname{tanC} \right)}^{2}}=1 \\
& \Rightarrow {{\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]}^{2}}=1 \\
\end{align}$
And hence, taking square root to both sides, we get
$\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\pm 1$ …………….. (ix)
Now, we know that the above term in LHS will be equal to $\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)$ from the equation (iv). Hence, we get the values of both as
$\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)=\pm 1$
Hence, it is proved.
Note: Another approach for solving the question would be that we can multiply both sides by
$\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)\Rightarrow \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)$, And hence, we get
Let us multiply given relation by
$\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)$
Hence, we get
${{\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]}^{2}}=\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)\left( {{\sec }^{2}}B-{{\tan }^{2}}B \right)\left( {{\sec }^{2}}C-{{\tan }^{2}}C \right)$
Where, use $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$.
Now, replace R.H.S of above equation by 1, with using trigonometric identity
$\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)=1$.
One may change $\sec \theta $ to $\dfrac{1}{\cos \theta },tan\theta $ to $\dfrac{\sin \theta }{cos\theta }$ and hence, can use identity ${{\sin }^{2}}\theta +co{{s}^{2}}\theta =1$ . So, it can be another approach for the question.
Observing the identity ${{\sin }^{2}}\theta -co{{s}^{2}}\theta =1$ of the form of $\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1$ is the key point of the question.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

