
If $ {\left[ {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = {3^{25}}(x + iy) $ where x and y are real then the ordered pair \[ \left( {x{\text{ }},{\text{ }}y} \right)\] is
\[ \left( 1 \right)\] \[ \left( { - 3{\text{ }},{\text{ }}0} \right)\]
\[ \left( 2 \right)\] \[ \left( {0{\text{ }},{\text{ }}3} \right)\]
\[ \left( 3 \right)\] \[ \left( {0{\text{ }},{\text{ }} - 3} \right)\]
\[ \left( 4 \right)\] $ \left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $
Answer
490.8k+ views
Hint: We have to find an ordered pair of \[ \left( {x,y} \right)\] . We solve this question using the concept of the cube root of unity . We should also have the knowledge of the identities of complex numbers . Firstly we have to make the equation in terms of one of the roots of unity and then comparing both the sides and then evaluating the value of $ x $ and $ y $ .
Complete step-by-step answer:
Given : $ {\left[ {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = {3^{25}}(x + iy) $
Taking , $ \sqrt 3 $ common from the L.H.S. , we get
$ {\left[ {\sqrt 3 \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)} \right] ^{50}} = {3^{25}}(x + iy) $
Taking $ \sqrt 3 $ out of the bracket , we get
$ {3^{25}}{\left[ {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = {3^{25}}(x + iy) $
Cancelling the terms
$ {\left[ {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = (x + iy) $
We know , $ {i^2} = - 1 $
$ {\left[ {\dfrac{{ - {i^2}\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = (x + iy) $
Taking in common from the L.H.S.
$ {i^{50}}{\left[ {\dfrac{{ - i\sqrt 3 }}{2} + \dfrac{1}{2}} \right] ^{50}} = (x + iy) $
We also know , $ i = \sqrt { - 1} $ and the values of i repeats in multiples of \[ 4\]
So, simplifying the equation
$ {i^{4 \times 12 + 2}}{\left[ {\dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = (x + iy) $
We know , $ {i^{(4n + 2)}} = {i^2} $ and $ {i^2} = - 1 $
$ - {\left[ {\dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = (x + iy) $
Also ,
$ - {\left[ { - \left( {\dfrac{{ - 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right)} \right] ^{50}} = (x + iy) $
As ,
$ \left[ {\dfrac{{ - 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right] $ is one root of unity
So ,
Let \[ \omega = - \dfrac{1}{2} + i \times \dfrac{{\sqrt 3 }}{2}\]
Then , the equation becomes \[ {\omega ^{50}} = x + iy\]
Similarly , roots of unity also follows the rule of iota( \[ \;i\] ) i.e. the values of ω repeats in multiples of 4
So,
\[ - {\omega ^{4 \times 12 + 2}} = x + iy\]
We know , $ {i^{(4n + 2)}} = {i^2} $ and $ {i^2} = - 1 $
Similarly , $ {\omega ^{(4n + 2)}} = {\omega ^2} $
\[ - {\omega ^2} = x + iy\]
As we assumed that $ \left( { - \dfrac{1}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right) $ is one of the complex root of unity
So , the other complex root of unity is $ \left( { - \dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right) $
i.e.
$ {\omega ^2} = \left( { - \dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right) $
Putting $ {\omega ^2} $ in equation , then
\[ - \left( {\dfrac{-1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right) = \left( {x + iy} \right)\]
\[ \left( {\dfrac{{ 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right) = \left( {x + iy} \right)\]
Comparing the real part with the real part and complex part with complex part , we get
\[ x{\text{ }} = {\text{ }}\dfrac{1}{2}\] and $ y = \dfrac{{\sqrt 3 }}{2} $
Hence , The value of ordered pair \[ \left( {x,y} \right) = \left( {\dfrac{{ 1}}{2},\dfrac{{\sqrt 3 }}{2}} \right)\] .
Thus , the correct option is \[ \left( 4 \right)\] .
So, the correct answer is “Option 4”.
Note: The equation of the cube root of the unit is given as : $ {\omega ^2} + \omega + 1 = 0 $ . We can calculate the value of \[ \omega \] by using the quadratic formula . The quadratic formula is \[ \dfrac{{\sqrt { - b \pm [{b^2} - 4ac] } }}{{2a}}\] . Where $ a $ is the coefficient of $ {\omega ^2} $ , $ b $ is the coefficient of \[ \omega \] and $ c $ is the coefficient of the constant term in the quadratic equation . Two roots of unity are complex numbers and one is a real number .
Complete step-by-step answer:
Given : $ {\left[ {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = {3^{25}}(x + iy) $
Taking , $ \sqrt 3 $ common from the L.H.S. , we get
$ {\left[ {\sqrt 3 \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)} \right] ^{50}} = {3^{25}}(x + iy) $
Taking $ \sqrt 3 $ out of the bracket , we get
$ {3^{25}}{\left[ {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = {3^{25}}(x + iy) $
Cancelling the terms
$ {\left[ {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = (x + iy) $
We know , $ {i^2} = - 1 $
$ {\left[ {\dfrac{{ - {i^2}\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = (x + iy) $
Taking in common from the L.H.S.
$ {i^{50}}{\left[ {\dfrac{{ - i\sqrt 3 }}{2} + \dfrac{1}{2}} \right] ^{50}} = (x + iy) $
We also know , $ i = \sqrt { - 1} $ and the values of i repeats in multiples of \[ 4\]
So, simplifying the equation
$ {i^{4 \times 12 + 2}}{\left[ {\dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = (x + iy) $
We know , $ {i^{(4n + 2)}} = {i^2} $ and $ {i^2} = - 1 $
$ - {\left[ {\dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = (x + iy) $
Also ,
$ - {\left[ { - \left( {\dfrac{{ - 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right)} \right] ^{50}} = (x + iy) $
As ,
$ \left[ {\dfrac{{ - 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right] $ is one root of unity
So ,
Let \[ \omega = - \dfrac{1}{2} + i \times \dfrac{{\sqrt 3 }}{2}\]
Then , the equation becomes \[ {\omega ^{50}} = x + iy\]
Similarly , roots of unity also follows the rule of iota( \[ \;i\] ) i.e. the values of ω repeats in multiples of 4
So,
\[ - {\omega ^{4 \times 12 + 2}} = x + iy\]
We know , $ {i^{(4n + 2)}} = {i^2} $ and $ {i^2} = - 1 $
Similarly , $ {\omega ^{(4n + 2)}} = {\omega ^2} $
\[ - {\omega ^2} = x + iy\]
As we assumed that $ \left( { - \dfrac{1}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right) $ is one of the complex root of unity
So , the other complex root of unity is $ \left( { - \dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right) $
i.e.
$ {\omega ^2} = \left( { - \dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right) $
Putting $ {\omega ^2} $ in equation , then
\[ - \left( {\dfrac{-1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right) = \left( {x + iy} \right)\]
\[ \left( {\dfrac{{ 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right) = \left( {x + iy} \right)\]
Comparing the real part with the real part and complex part with complex part , we get
\[ x{\text{ }} = {\text{ }}\dfrac{1}{2}\] and $ y = \dfrac{{\sqrt 3 }}{2} $
Hence , The value of ordered pair \[ \left( {x,y} \right) = \left( {\dfrac{{ 1}}{2},\dfrac{{\sqrt 3 }}{2}} \right)\] .
Thus , the correct option is \[ \left( 4 \right)\] .
So, the correct answer is “Option 4”.
Note: The equation of the cube root of the unit is given as : $ {\omega ^2} + \omega + 1 = 0 $ . We can calculate the value of \[ \omega \] by using the quadratic formula . The quadratic formula is \[ \dfrac{{\sqrt { - b \pm [{b^2} - 4ac] } }}{{2a}}\] . Where $ a $ is the coefficient of $ {\omega ^2} $ , $ b $ is the coefficient of \[ \omega \] and $ c $ is the coefficient of the constant term in the quadratic equation . Two roots of unity are complex numbers and one is a real number .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

