
If $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n-1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 78 \\
0 & 1 \\
\end{matrix} \right]$, then the inverse of $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$ is
[a] $\left[ \begin{matrix}
1 & -13 \\
0 & 1 \\
\end{matrix} \right]$
[b] $\left[ \begin{matrix}
1 & 0 \\
12 & 1 \\
\end{matrix} \right]$
[c] $\left[ \begin{matrix}
1 & -12 \\
0 & 1 \\
\end{matrix} \right]$
[d] $\left[ \begin{matrix}
1 & 0 \\
13 & 1 \\
\end{matrix} \right]$
Answer
509.4k+ views
Hint: Assume that $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$. Form a recursive relation for f(n) and solve for f(n) by considering the product $\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$. Hence find the value of n satisfying $f\left( n-1 \right)=78$ and hence find the inverse of $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$.
Complete step-by-step solution:
Let us take $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Replacing n by n-1, we get
$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n-1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Now, performing matrix multiplication, we have
$\left[ \begin{matrix}
1 & n+f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Equating elements of both matrices, we get
$\begin{align}
& n+f\left( n-1 \right)=f\left( n \right) \\
& \Rightarrow f\left( n \right)-f\left( n-1 \right)=n \\
\end{align}$
Replacing n by n-1, we get
$f\left( n-1 \right)-f\left( n-2 \right)=n-1$
Replacing n by n-1, we get
$\begin{align}
& f\left( n-2 \right)-f\left( n-3 \right)=n-2 \\
& \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \\
\end{align}$
Continuing this way, we get
$f\left( 2 \right)-f\left( 1 \right)=2$
Adding all these equations formed, we get
$\begin{align}
& f\left( n \right)-f\left( n-1 \right)+f\left( n-1 \right)-f\left( n-2 \right)+\cdots +f\left( 2 \right)-f\left( 1 \right)=n+n-1+n-2+\cdots +2 \\
& \Rightarrow f\left( n \right)-f\left( 1 \right)=2+3+4+\cdots +n \\
\end{align}$
Also, we have
$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( 1 \right) \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have
f(1) = 1
Hence, we have
$f\left( n \right)=1+2+\cdots +n$
We know that the sum of the first n natural numbers is $\dfrac{n\left( n+1 \right)}{2}$
Hence, we have
$f\left( n \right)=\dfrac{n\left( n+1 \right)}{2}$
From the given equation, we have
$\begin{align}
& f\left( n-1 \right)=78 \\
& \Rightarrow \dfrac{n\left( n-1 \right)}{2}=78 \\
& \Rightarrow {{n}^{2}}-n=156 \\
& \Rightarrow {{n}^{2}}-n-156=0 \\
\end{align}$
We solve this quadratic equation using splitting the middle term method
We have $13-12=1$ and $13\times 12=156$
Hence, we have
${{n}^{2}}-13n+12n-156=0$
Taking n common from the first two terms and 12 common from the last two terms, we get
$n\left( n-13 \right)+12\left( n-13 \right)=0$
Taking n-13 common from the two terms, we get
$\left( n+12 \right)\left( n-13 \right)=0$
Since n is natural number n > 0 and hence n + 12 > 0
Hence, we have
$\begin{align}
& n-13=0 \\
& \Rightarrow n=13 \\
\end{align}$
Hence, the matrix $M=\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$ is given by $M=\left[ \begin{matrix}
1 & 13 \\
0 & 1 \\
\end{matrix} \right]$
Here det(M) = 1
We know that \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\Rightarrow {{A}^{-1}}=\dfrac{1}{\det A}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]\]
Hence, we have
${{M}^{-1}}=\left[ \begin{matrix}
1 & -13 \\
0 & 1 \\
\end{matrix} \right]$
Hence option [a] is correct.
Note: The equations of the form ${{T}_{n}}-{{T}_{n-1}}=g\left( n \right)$ form a telescopic series on writing down of all terms and hence ${{T}_{n}}={{T}_{1}}+\sum\limits_{i=2}^{n}{g\left( i \right)}$. Although we have shown how the total sum comes, the student is advised to remember the result
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$. Form a recursive relation for f(n) and solve for f(n) by considering the product $\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$. Hence find the value of n satisfying $f\left( n-1 \right)=78$ and hence find the inverse of $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$.
Complete step-by-step solution:
Let us take $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Replacing n by n-1, we get
$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n-1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Now, performing matrix multiplication, we have
$\left[ \begin{matrix}
1 & n+f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Equating elements of both matrices, we get
$\begin{align}
& n+f\left( n-1 \right)=f\left( n \right) \\
& \Rightarrow f\left( n \right)-f\left( n-1 \right)=n \\
\end{align}$
Replacing n by n-1, we get
$f\left( n-1 \right)-f\left( n-2 \right)=n-1$
Replacing n by n-1, we get
$\begin{align}
& f\left( n-2 \right)-f\left( n-3 \right)=n-2 \\
& \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \\
\end{align}$
Continuing this way, we get
$f\left( 2 \right)-f\left( 1 \right)=2$
Adding all these equations formed, we get
$\begin{align}
& f\left( n \right)-f\left( n-1 \right)+f\left( n-1 \right)-f\left( n-2 \right)+\cdots +f\left( 2 \right)-f\left( 1 \right)=n+n-1+n-2+\cdots +2 \\
& \Rightarrow f\left( n \right)-f\left( 1 \right)=2+3+4+\cdots +n \\
\end{align}$
Also, we have
$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( 1 \right) \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have
f(1) = 1
Hence, we have
$f\left( n \right)=1+2+\cdots +n$
We know that the sum of the first n natural numbers is $\dfrac{n\left( n+1 \right)}{2}$
Hence, we have
$f\left( n \right)=\dfrac{n\left( n+1 \right)}{2}$
From the given equation, we have
$\begin{align}
& f\left( n-1 \right)=78 \\
& \Rightarrow \dfrac{n\left( n-1 \right)}{2}=78 \\
& \Rightarrow {{n}^{2}}-n=156 \\
& \Rightarrow {{n}^{2}}-n-156=0 \\
\end{align}$
We solve this quadratic equation using splitting the middle term method
We have $13-12=1$ and $13\times 12=156$
Hence, we have
${{n}^{2}}-13n+12n-156=0$
Taking n common from the first two terms and 12 common from the last two terms, we get
$n\left( n-13 \right)+12\left( n-13 \right)=0$
Taking n-13 common from the two terms, we get
$\left( n+12 \right)\left( n-13 \right)=0$
Since n is natural number n > 0 and hence n + 12 > 0
Hence, we have
$\begin{align}
& n-13=0 \\
& \Rightarrow n=13 \\
\end{align}$
Hence, the matrix $M=\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$ is given by $M=\left[ \begin{matrix}
1 & 13 \\
0 & 1 \\
\end{matrix} \right]$
Here det(M) = 1
We know that \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\Rightarrow {{A}^{-1}}=\dfrac{1}{\det A}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]\]
Hence, we have
${{M}^{-1}}=\left[ \begin{matrix}
1 & -13 \\
0 & 1 \\
\end{matrix} \right]$
Hence option [a] is correct.
Note: The equations of the form ${{T}_{n}}-{{T}_{n-1}}=g\left( n \right)$ form a telescopic series on writing down of all terms and hence ${{T}_{n}}={{T}_{1}}+\sum\limits_{i=2}^{n}{g\left( i \right)}$. Although we have shown how the total sum comes, the student is advised to remember the result
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
