
If $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n-1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 78 \\
0 & 1 \\
\end{matrix} \right]$, then the inverse of $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$ is
[a] $\left[ \begin{matrix}
1 & -13 \\
0 & 1 \\
\end{matrix} \right]$
[b] $\left[ \begin{matrix}
1 & 0 \\
12 & 1 \\
\end{matrix} \right]$
[c] $\left[ \begin{matrix}
1 & -12 \\
0 & 1 \\
\end{matrix} \right]$
[d] $\left[ \begin{matrix}
1 & 0 \\
13 & 1 \\
\end{matrix} \right]$
Answer
588.9k+ views
Hint: Assume that $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$. Form a recursive relation for f(n) and solve for f(n) by considering the product $\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$. Hence find the value of n satisfying $f\left( n-1 \right)=78$ and hence find the inverse of $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$.
Complete step-by-step solution:
Let us take $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Replacing n by n-1, we get
$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n-1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Now, performing matrix multiplication, we have
$\left[ \begin{matrix}
1 & n+f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Equating elements of both matrices, we get
$\begin{align}
& n+f\left( n-1 \right)=f\left( n \right) \\
& \Rightarrow f\left( n \right)-f\left( n-1 \right)=n \\
\end{align}$
Replacing n by n-1, we get
$f\left( n-1 \right)-f\left( n-2 \right)=n-1$
Replacing n by n-1, we get
$\begin{align}
& f\left( n-2 \right)-f\left( n-3 \right)=n-2 \\
& \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \\
\end{align}$
Continuing this way, we get
$f\left( 2 \right)-f\left( 1 \right)=2$
Adding all these equations formed, we get
$\begin{align}
& f\left( n \right)-f\left( n-1 \right)+f\left( n-1 \right)-f\left( n-2 \right)+\cdots +f\left( 2 \right)-f\left( 1 \right)=n+n-1+n-2+\cdots +2 \\
& \Rightarrow f\left( n \right)-f\left( 1 \right)=2+3+4+\cdots +n \\
\end{align}$
Also, we have
$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( 1 \right) \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have
f(1) = 1
Hence, we have
$f\left( n \right)=1+2+\cdots +n$
We know that the sum of the first n natural numbers is $\dfrac{n\left( n+1 \right)}{2}$
Hence, we have
$f\left( n \right)=\dfrac{n\left( n+1 \right)}{2}$
From the given equation, we have
$\begin{align}
& f\left( n-1 \right)=78 \\
& \Rightarrow \dfrac{n\left( n-1 \right)}{2}=78 \\
& \Rightarrow {{n}^{2}}-n=156 \\
& \Rightarrow {{n}^{2}}-n-156=0 \\
\end{align}$
We solve this quadratic equation using splitting the middle term method
We have $13-12=1$ and $13\times 12=156$
Hence, we have
${{n}^{2}}-13n+12n-156=0$
Taking n common from the first two terms and 12 common from the last two terms, we get
$n\left( n-13 \right)+12\left( n-13 \right)=0$
Taking n-13 common from the two terms, we get
$\left( n+12 \right)\left( n-13 \right)=0$
Since n is natural number n > 0 and hence n + 12 > 0
Hence, we have
$\begin{align}
& n-13=0 \\
& \Rightarrow n=13 \\
\end{align}$
Hence, the matrix $M=\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$ is given by $M=\left[ \begin{matrix}
1 & 13 \\
0 & 1 \\
\end{matrix} \right]$
Here det(M) = 1
We know that \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\Rightarrow {{A}^{-1}}=\dfrac{1}{\det A}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]\]
Hence, we have
${{M}^{-1}}=\left[ \begin{matrix}
1 & -13 \\
0 & 1 \\
\end{matrix} \right]$
Hence option [a] is correct.
Note: The equations of the form ${{T}_{n}}-{{T}_{n-1}}=g\left( n \right)$ form a telescopic series on writing down of all terms and hence ${{T}_{n}}={{T}_{1}}+\sum\limits_{i=2}^{n}{g\left( i \right)}$. Although we have shown how the total sum comes, the student is advised to remember the result
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$. Form a recursive relation for f(n) and solve for f(n) by considering the product $\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$. Hence find the value of n satisfying $f\left( n-1 \right)=78$ and hence find the inverse of $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$.
Complete step-by-step solution:
Let us take $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Replacing n by n-1, we get
$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]\cdots \left[ \begin{matrix}
1 & n-1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
1 & f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Now, performing matrix multiplication, we have
$\left[ \begin{matrix}
1 & n+f\left( n-1 \right) \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( n \right) \\
0 & 1 \\
\end{matrix} \right]$
Equating elements of both matrices, we get
$\begin{align}
& n+f\left( n-1 \right)=f\left( n \right) \\
& \Rightarrow f\left( n \right)-f\left( n-1 \right)=n \\
\end{align}$
Replacing n by n-1, we get
$f\left( n-1 \right)-f\left( n-2 \right)=n-1$
Replacing n by n-1, we get
$\begin{align}
& f\left( n-2 \right)-f\left( n-3 \right)=n-2 \\
& \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \\
\end{align}$
Continuing this way, we get
$f\left( 2 \right)-f\left( 1 \right)=2$
Adding all these equations formed, we get
$\begin{align}
& f\left( n \right)-f\left( n-1 \right)+f\left( n-1 \right)-f\left( n-2 \right)+\cdots +f\left( 2 \right)-f\left( 1 \right)=n+n-1+n-2+\cdots +2 \\
& \Rightarrow f\left( n \right)-f\left( 1 \right)=2+3+4+\cdots +n \\
\end{align}$
Also, we have
$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & f\left( 1 \right) \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have
f(1) = 1
Hence, we have
$f\left( n \right)=1+2+\cdots +n$
We know that the sum of the first n natural numbers is $\dfrac{n\left( n+1 \right)}{2}$
Hence, we have
$f\left( n \right)=\dfrac{n\left( n+1 \right)}{2}$
From the given equation, we have
$\begin{align}
& f\left( n-1 \right)=78 \\
& \Rightarrow \dfrac{n\left( n-1 \right)}{2}=78 \\
& \Rightarrow {{n}^{2}}-n=156 \\
& \Rightarrow {{n}^{2}}-n-156=0 \\
\end{align}$
We solve this quadratic equation using splitting the middle term method
We have $13-12=1$ and $13\times 12=156$
Hence, we have
${{n}^{2}}-13n+12n-156=0$
Taking n common from the first two terms and 12 common from the last two terms, we get
$n\left( n-13 \right)+12\left( n-13 \right)=0$
Taking n-13 common from the two terms, we get
$\left( n+12 \right)\left( n-13 \right)=0$
Since n is natural number n > 0 and hence n + 12 > 0
Hence, we have
$\begin{align}
& n-13=0 \\
& \Rightarrow n=13 \\
\end{align}$
Hence, the matrix $M=\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$ is given by $M=\left[ \begin{matrix}
1 & 13 \\
0 & 1 \\
\end{matrix} \right]$
Here det(M) = 1
We know that \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\Rightarrow {{A}^{-1}}=\dfrac{1}{\det A}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]\]
Hence, we have
${{M}^{-1}}=\left[ \begin{matrix}
1 & -13 \\
0 & 1 \\
\end{matrix} \right]$
Hence option [a] is correct.
Note: The equations of the form ${{T}_{n}}-{{T}_{n-1}}=g\left( n \right)$ form a telescopic series on writing down of all terms and hence ${{T}_{n}}={{T}_{1}}+\sum\limits_{i=2}^{n}{g\left( i \right)}$. Although we have shown how the total sum comes, the student is advised to remember the result
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

