
If $ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5}&{10x + 17} \\
{x + 2}&{2x + 3}&{3x + 5} \\
{2x + 3}&{3x + 4}&{5x + 8}
\end{array}} \right| = 0 $ . Find out $ x $ .
Answer
537.6k+ views
Hint:In order to deal with this question we will first do raw and column operation to convert the given determinant matrix in the simplest form further we will open it with any row or column and we will get the equation in $ x $ and by solving it we will get the required answer.
Complete step-by-step answer:
Given equation is $ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5}&{10x + 17} \\
{x + 2}&{2x + 3}&{3x + 5} \\
{2x + 3}&{3x + 4}&{5x + 8}
\end{array}} \right| = 0 $
First we have to simplify above equation so for it we will evaluate row-column operations
Therefore first we have to do column operation in second column as $ {C_2} \to {C_2} - {C_1} $
So we have
$ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5 - (3x + 4)}&{10x + 17} \\
{x + 2}&{2x + 3 - (x + 2)}&{3x + 5} \\
{2x + 3}&{3x + 4 - (2x + 3)}&{5x + 8}
\end{array}} \right| = 0 $
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{3x + 4}&{x + 1}&{10x + 17} \\
{x + 2}&{x + 1}&{3x + 5} \\
{2x + 3}&{x + 1}&{5x + 8}
\end{array}} \right| = 0 $
By taking $ x + 1 $ common from second column , we have
$ \Rightarrow (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{x + 2}&1&{3x + 5} \\
{2x + 3}&1&{5x + 8}
\end{array}} \right| = 0 $
Now by row operation in second and third row as $ {R_2} \to {R_2} - {R_1},{R_3} \to {R_3} - {R_1} $ , we get
$ (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{x + 2 - (3x + 4)}&{1 - 1}&{3x + 5 - (10x + 17)} \\
{2x + 3 - (3x + 4)}&{1 - 1}&{5x + 8 - (10x + 17)}
\end{array}} \right| = 0 $
$ (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{ - 2x - 2}&0&{ - 7x - 12} \\
{ - x - 1}&0&{ - 5x - 9}
\end{array}} \right| = 0 $
Now by expanding above matrix with the help of second column we have
$
(x + 1)\left[ { - 1\left| {\begin{array}{*{20}{c}}
{ - 2x - 2}&{ - 7x - 12} \\
{ - x - 1}&{ - 5x - 9}
\end{array}} \right| + 0 - 0} \right] = 0 \\
\Rightarrow (x + 1)\left[ { - 1\{ ( - 2x - 2)( - 5x - 9) - ( - 7x - 12)( - x - 1)\} } \right] = 0 \\
\Rightarrow (x + 1)[ - 1\{ ( - 2x - 2)( - 5x - 9) - (7x + 12)(x + 1)\} ] = 0 \\
\Rightarrow (x + 1)[7{x^2} + 19x + 12 - 10{x^2} - 28x - 18] = 0 \\
\Rightarrow (x + 1)[ - 3{x^2} - 9x - 6] = 0 \\
$
Further solving quadratic equation by taking common as $ 3 $ , we get
$
\\
\Rightarrow (x + 1)( - 3)[{x^2} + 3x - 2] = 0 \\
\Rightarrow (x + 1)[{x^2} + 3x + 2] = \dfrac{0}{{( - 3)}} \\
\Rightarrow (x + 1)[{x^2} + 2x + x + 2] = 0 \\
\Rightarrow (x + 1)[x(x + 2) + 1(x + 2)] = 0 \\
\Rightarrow {(x + 1)^2}(x + 2) = 0 \\
{\text{Either }}{(x + 1)^2} = 0{\text{ or }}(x + 2) = 0 \\
{\text{if }}{(x + 1)^2} = 0 \\
\Rightarrow x = - 1 \\
{\text{By taking }}(x + 2) = 0 \\
\Rightarrow x = - 2 \\
$
Hence, we get two values of $ x $ are $ - 1{\text{ and - 2}} $ .
Note:A column vector or column matrix is an $ M \times 1 $ matrix, that is, a matrix consisting of a single column of $ M $ elements, Similarly, a row vector or row matrix is a $ 1 \times M $ matrix, that is, a matrix consisting of a single row of m elements Throughout, boldface is used for the row and column vectors.
Complete step-by-step answer:
Given equation is $ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5}&{10x + 17} \\
{x + 2}&{2x + 3}&{3x + 5} \\
{2x + 3}&{3x + 4}&{5x + 8}
\end{array}} \right| = 0 $
First we have to simplify above equation so for it we will evaluate row-column operations
Therefore first we have to do column operation in second column as $ {C_2} \to {C_2} - {C_1} $
So we have
$ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5 - (3x + 4)}&{10x + 17} \\
{x + 2}&{2x + 3 - (x + 2)}&{3x + 5} \\
{2x + 3}&{3x + 4 - (2x + 3)}&{5x + 8}
\end{array}} \right| = 0 $
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{3x + 4}&{x + 1}&{10x + 17} \\
{x + 2}&{x + 1}&{3x + 5} \\
{2x + 3}&{x + 1}&{5x + 8}
\end{array}} \right| = 0 $
By taking $ x + 1 $ common from second column , we have
$ \Rightarrow (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{x + 2}&1&{3x + 5} \\
{2x + 3}&1&{5x + 8}
\end{array}} \right| = 0 $
Now by row operation in second and third row as $ {R_2} \to {R_2} - {R_1},{R_3} \to {R_3} - {R_1} $ , we get
$ (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{x + 2 - (3x + 4)}&{1 - 1}&{3x + 5 - (10x + 17)} \\
{2x + 3 - (3x + 4)}&{1 - 1}&{5x + 8 - (10x + 17)}
\end{array}} \right| = 0 $
$ (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{ - 2x - 2}&0&{ - 7x - 12} \\
{ - x - 1}&0&{ - 5x - 9}
\end{array}} \right| = 0 $
Now by expanding above matrix with the help of second column we have
$
(x + 1)\left[ { - 1\left| {\begin{array}{*{20}{c}}
{ - 2x - 2}&{ - 7x - 12} \\
{ - x - 1}&{ - 5x - 9}
\end{array}} \right| + 0 - 0} \right] = 0 \\
\Rightarrow (x + 1)\left[ { - 1\{ ( - 2x - 2)( - 5x - 9) - ( - 7x - 12)( - x - 1)\} } \right] = 0 \\
\Rightarrow (x + 1)[ - 1\{ ( - 2x - 2)( - 5x - 9) - (7x + 12)(x + 1)\} ] = 0 \\
\Rightarrow (x + 1)[7{x^2} + 19x + 12 - 10{x^2} - 28x - 18] = 0 \\
\Rightarrow (x + 1)[ - 3{x^2} - 9x - 6] = 0 \\
$
Further solving quadratic equation by taking common as $ 3 $ , we get
$
\\
\Rightarrow (x + 1)( - 3)[{x^2} + 3x - 2] = 0 \\
\Rightarrow (x + 1)[{x^2} + 3x + 2] = \dfrac{0}{{( - 3)}} \\
\Rightarrow (x + 1)[{x^2} + 2x + x + 2] = 0 \\
\Rightarrow (x + 1)[x(x + 2) + 1(x + 2)] = 0 \\
\Rightarrow {(x + 1)^2}(x + 2) = 0 \\
{\text{Either }}{(x + 1)^2} = 0{\text{ or }}(x + 2) = 0 \\
{\text{if }}{(x + 1)^2} = 0 \\
\Rightarrow x = - 1 \\
{\text{By taking }}(x + 2) = 0 \\
\Rightarrow x = - 2 \\
$
Hence, we get two values of $ x $ are $ - 1{\text{ and - 2}} $ .
Note:A column vector or column matrix is an $ M \times 1 $ matrix, that is, a matrix consisting of a single column of $ M $ elements, Similarly, a row vector or row matrix is a $ 1 \times M $ matrix, that is, a matrix consisting of a single row of m elements Throughout, boldface is used for the row and column vectors.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
