
If $ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5}&{10x + 17} \\
{x + 2}&{2x + 3}&{3x + 5} \\
{2x + 3}&{3x + 4}&{5x + 8}
\end{array}} \right| = 0 $ . Find out $ x $ .
Answer
600.3k+ views
Hint:In order to deal with this question we will first do raw and column operation to convert the given determinant matrix in the simplest form further we will open it with any row or column and we will get the equation in $ x $ and by solving it we will get the required answer.
Complete step-by-step answer:
Given equation is $ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5}&{10x + 17} \\
{x + 2}&{2x + 3}&{3x + 5} \\
{2x + 3}&{3x + 4}&{5x + 8}
\end{array}} \right| = 0 $
First we have to simplify above equation so for it we will evaluate row-column operations
Therefore first we have to do column operation in second column as $ {C_2} \to {C_2} - {C_1} $
So we have
$ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5 - (3x + 4)}&{10x + 17} \\
{x + 2}&{2x + 3 - (x + 2)}&{3x + 5} \\
{2x + 3}&{3x + 4 - (2x + 3)}&{5x + 8}
\end{array}} \right| = 0 $
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{3x + 4}&{x + 1}&{10x + 17} \\
{x + 2}&{x + 1}&{3x + 5} \\
{2x + 3}&{x + 1}&{5x + 8}
\end{array}} \right| = 0 $
By taking $ x + 1 $ common from second column , we have
$ \Rightarrow (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{x + 2}&1&{3x + 5} \\
{2x + 3}&1&{5x + 8}
\end{array}} \right| = 0 $
Now by row operation in second and third row as $ {R_2} \to {R_2} - {R_1},{R_3} \to {R_3} - {R_1} $ , we get
$ (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{x + 2 - (3x + 4)}&{1 - 1}&{3x + 5 - (10x + 17)} \\
{2x + 3 - (3x + 4)}&{1 - 1}&{5x + 8 - (10x + 17)}
\end{array}} \right| = 0 $
$ (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{ - 2x - 2}&0&{ - 7x - 12} \\
{ - x - 1}&0&{ - 5x - 9}
\end{array}} \right| = 0 $
Now by expanding above matrix with the help of second column we have
$
(x + 1)\left[ { - 1\left| {\begin{array}{*{20}{c}}
{ - 2x - 2}&{ - 7x - 12} \\
{ - x - 1}&{ - 5x - 9}
\end{array}} \right| + 0 - 0} \right] = 0 \\
\Rightarrow (x + 1)\left[ { - 1\{ ( - 2x - 2)( - 5x - 9) - ( - 7x - 12)( - x - 1)\} } \right] = 0 \\
\Rightarrow (x + 1)[ - 1\{ ( - 2x - 2)( - 5x - 9) - (7x + 12)(x + 1)\} ] = 0 \\
\Rightarrow (x + 1)[7{x^2} + 19x + 12 - 10{x^2} - 28x - 18] = 0 \\
\Rightarrow (x + 1)[ - 3{x^2} - 9x - 6] = 0 \\
$
Further solving quadratic equation by taking common as $ 3 $ , we get
$
\\
\Rightarrow (x + 1)( - 3)[{x^2} + 3x - 2] = 0 \\
\Rightarrow (x + 1)[{x^2} + 3x + 2] = \dfrac{0}{{( - 3)}} \\
\Rightarrow (x + 1)[{x^2} + 2x + x + 2] = 0 \\
\Rightarrow (x + 1)[x(x + 2) + 1(x + 2)] = 0 \\
\Rightarrow {(x + 1)^2}(x + 2) = 0 \\
{\text{Either }}{(x + 1)^2} = 0{\text{ or }}(x + 2) = 0 \\
{\text{if }}{(x + 1)^2} = 0 \\
\Rightarrow x = - 1 \\
{\text{By taking }}(x + 2) = 0 \\
\Rightarrow x = - 2 \\
$
Hence, we get two values of $ x $ are $ - 1{\text{ and - 2}} $ .
Note:A column vector or column matrix is an $ M \times 1 $ matrix, that is, a matrix consisting of a single column of $ M $ elements, Similarly, a row vector or row matrix is a $ 1 \times M $ matrix, that is, a matrix consisting of a single row of m elements Throughout, boldface is used for the row and column vectors.
Complete step-by-step answer:
Given equation is $ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5}&{10x + 17} \\
{x + 2}&{2x + 3}&{3x + 5} \\
{2x + 3}&{3x + 4}&{5x + 8}
\end{array}} \right| = 0 $
First we have to simplify above equation so for it we will evaluate row-column operations
Therefore first we have to do column operation in second column as $ {C_2} \to {C_2} - {C_1} $
So we have
$ \left| {\begin{array}{*{20}{c}}
{3x + 4}&{4x + 5 - (3x + 4)}&{10x + 17} \\
{x + 2}&{2x + 3 - (x + 2)}&{3x + 5} \\
{2x + 3}&{3x + 4 - (2x + 3)}&{5x + 8}
\end{array}} \right| = 0 $
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{3x + 4}&{x + 1}&{10x + 17} \\
{x + 2}&{x + 1}&{3x + 5} \\
{2x + 3}&{x + 1}&{5x + 8}
\end{array}} \right| = 0 $
By taking $ x + 1 $ common from second column , we have
$ \Rightarrow (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{x + 2}&1&{3x + 5} \\
{2x + 3}&1&{5x + 8}
\end{array}} \right| = 0 $
Now by row operation in second and third row as $ {R_2} \to {R_2} - {R_1},{R_3} \to {R_3} - {R_1} $ , we get
$ (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{x + 2 - (3x + 4)}&{1 - 1}&{3x + 5 - (10x + 17)} \\
{2x + 3 - (3x + 4)}&{1 - 1}&{5x + 8 - (10x + 17)}
\end{array}} \right| = 0 $
$ (x + 1)\left| {\begin{array}{*{20}{c}}
{3x + 4}&1&{10x + 17} \\
{ - 2x - 2}&0&{ - 7x - 12} \\
{ - x - 1}&0&{ - 5x - 9}
\end{array}} \right| = 0 $
Now by expanding above matrix with the help of second column we have
$
(x + 1)\left[ { - 1\left| {\begin{array}{*{20}{c}}
{ - 2x - 2}&{ - 7x - 12} \\
{ - x - 1}&{ - 5x - 9}
\end{array}} \right| + 0 - 0} \right] = 0 \\
\Rightarrow (x + 1)\left[ { - 1\{ ( - 2x - 2)( - 5x - 9) - ( - 7x - 12)( - x - 1)\} } \right] = 0 \\
\Rightarrow (x + 1)[ - 1\{ ( - 2x - 2)( - 5x - 9) - (7x + 12)(x + 1)\} ] = 0 \\
\Rightarrow (x + 1)[7{x^2} + 19x + 12 - 10{x^2} - 28x - 18] = 0 \\
\Rightarrow (x + 1)[ - 3{x^2} - 9x - 6] = 0 \\
$
Further solving quadratic equation by taking common as $ 3 $ , we get
$
\\
\Rightarrow (x + 1)( - 3)[{x^2} + 3x - 2] = 0 \\
\Rightarrow (x + 1)[{x^2} + 3x + 2] = \dfrac{0}{{( - 3)}} \\
\Rightarrow (x + 1)[{x^2} + 2x + x + 2] = 0 \\
\Rightarrow (x + 1)[x(x + 2) + 1(x + 2)] = 0 \\
\Rightarrow {(x + 1)^2}(x + 2) = 0 \\
{\text{Either }}{(x + 1)^2} = 0{\text{ or }}(x + 2) = 0 \\
{\text{if }}{(x + 1)^2} = 0 \\
\Rightarrow x = - 1 \\
{\text{By taking }}(x + 2) = 0 \\
\Rightarrow x = - 2 \\
$
Hence, we get two values of $ x $ are $ - 1{\text{ and - 2}} $ .
Note:A column vector or column matrix is an $ M \times 1 $ matrix, that is, a matrix consisting of a single column of $ M $ elements, Similarly, a row vector or row matrix is a $ 1 \times M $ matrix, that is, a matrix consisting of a single row of m elements Throughout, boldface is used for the row and column vectors.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

