
If $\left| a \right|=\left| b \right|=1$ and $\left| a+b \right|=\sqrt{3}$, then the value of $\left( 3a-4b \right)\left( 2a+5b \right)$ is
A. $-21$
B. $-\dfrac{21}{2}$
C. 21
D. $\dfrac{21}{2}$
Answer
508.2k+ views
Hint: We first need to remove the modulus functions. We take the square value to get rid of the modulus function. We get the values of ${{a}^{2}},{{b}^{2}},{{\left( a+b \right)}^{2}}$. We use the square formula of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. We put the values to get the value of $ab$. We complete the multiplication of $\left( 3a-4b \right)\left( 2a+5b \right)$ and get the final solution.
Complete step by step answer:
The given condition is $\left| a \right|=\left| b \right|=1$. We take the square value to get rid of the modulus function.
We get ${{a}^{2}}={{b}^{2}}=1$. Applying similar thing for $\left| a+b \right|=\sqrt{3}$, we get ${{\left( a+b \right)}^{2}}=3$.
Now we break the square using ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Putting the values, we get
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \Rightarrow 3=1+1+2ab \\
& \Rightarrow ab=\dfrac{1}{2} \\
\end{align}$
We now complete the multiplication of $\left( 3a-4b \right)\left( 2a+5b \right)$.
$\left( 3a-4b \right)\left( 2a+5b \right)=6{{a}^{2}}-20{{b}^{2}}+7ab$
We put the values to get
$\begin{align}
& \left( 3a-4b \right)\left( 2a+5b \right) \\
& =6{{a}^{2}}-20{{b}^{2}}+7ab \\
& =6\times 1-20\times 1+7\times \dfrac{1}{2} \\
& =\dfrac{7}{2}-14 \\
& =-\dfrac{21}{2} \\
\end{align}$
Therefore, the value of $\left( 3a-4b \right)\left( 2a+5b \right)$ is $-\dfrac{21}{2}$. The correct option is option (B).
Note:
We use the modulus function to get the distance or length in general. That becomes without the sign. The vector form changes it to scalar form. Therefore, without taking square value we cannot use the modulus function in any simplification.
Complete step by step answer:
The given condition is $\left| a \right|=\left| b \right|=1$. We take the square value to get rid of the modulus function.
We get ${{a}^{2}}={{b}^{2}}=1$. Applying similar thing for $\left| a+b \right|=\sqrt{3}$, we get ${{\left( a+b \right)}^{2}}=3$.
Now we break the square using ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Putting the values, we get
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& \Rightarrow 3=1+1+2ab \\
& \Rightarrow ab=\dfrac{1}{2} \\
\end{align}$
We now complete the multiplication of $\left( 3a-4b \right)\left( 2a+5b \right)$.
$\left( 3a-4b \right)\left( 2a+5b \right)=6{{a}^{2}}-20{{b}^{2}}+7ab$
We put the values to get
$\begin{align}
& \left( 3a-4b \right)\left( 2a+5b \right) \\
& =6{{a}^{2}}-20{{b}^{2}}+7ab \\
& =6\times 1-20\times 1+7\times \dfrac{1}{2} \\
& =\dfrac{7}{2}-14 \\
& =-\dfrac{21}{2} \\
\end{align}$
Therefore, the value of $\left( 3a-4b \right)\left( 2a+5b \right)$ is $-\dfrac{21}{2}$. The correct option is option (B).
Note:
We use the modulus function to get the distance or length in general. That becomes without the sign. The vector form changes it to scalar form. Therefore, without taking square value we cannot use the modulus function in any simplification.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

