
If ${\left( {10} \right)^9} + 2{\left( {11} \right)^1}{\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ..... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9}$ , then k is equal to
A. $100$
B. $110$
C. $\dfrac{{121}}{{100}}$
D. $\dfrac{{441}}{{100}}$
Answer
498.3k+ views
Hint: Simplification is the process of writing the given algebraic expression effectively and most comfortably to understand without affecting the original expression. Moreover, various steps are involved to simplify an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Formula to be used:
a) $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
b) $\dfrac{1}{{{a^m}}} = {a^{ - m}}$
c)${a^m}{a^n} = {a^{m + n}}$
d) The formula to calculate the sum of the geometric series is as follows.
$1 + x + {x^2} + .... + {x^n} = \dfrac{{1 - {x^{n + 1}}}}{{1 - x}}$ where$x < 1$
Complete step by step answer:
The given equation is ${\left( {10} \right)^9} + 2{\left( {11} \right)^1}{\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ..... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9}$
To find: The value of k.
${\left( {10} \right)^9} + 2{\left( {11} \right)^1}{\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ..... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9}$
Let us divide the term ${\left( {10} \right)^9}$ into both sides.
That is $\dfrac{{{{\left( {10} \right)}^9}}}{{{{\left( {10} \right)}^9}}} + \dfrac{{2{{\left( {11} \right)}^1}{{\left( {10} \right)}^8}}}{{{{\left( {10} \right)}^9}}} + {\dfrac{{3{{\left( {11} \right)}^2}\left( {10} \right)}}{{{{\left( {10} \right)}^9}}}^7} + ..... + \dfrac{{10{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} = k\dfrac{{{{\left( {10} \right)}^9}}}{{{{\left( {10} \right)}^9}}}$
We shall apply $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$here.
$ \Rightarrow 1 + 2{\left( {11} \right)^1}{\left( {10} \right)^{8 - 9}} + 3{\left( {11} \right)^2}{\left( {10} \right)^{7 - 9}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} = k{10^{9 - 9}}$
$ \Rightarrow 1 + 2{\left( {11} \right)^1}{\left( {10} \right)^{ - 1}} + 3{\left( {11} \right)^2}{\left( {10} \right)^{ - 2}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} = k{10^0}$
Now, we shall apply $\dfrac{1}{{{a^m}}} = {a^{ - m}}$.
$ \Rightarrow 1 + 2{\left( {11} \right)^1}\dfrac{1}{{\left( {10} \right)}} + 3{\left( {11} \right)^2}\dfrac{1}{{{{\left( {10} \right)}^2}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} = k$ ………….$\left( 1 \right)$
Now, we shall multiply the term $\dfrac{{11}}{{10}}$ on both sides.
\[\dfrac{{11}}{{10}} + 2{\left( {11} \right)^1}\dfrac{1}{{\left( {10} \right)}}\dfrac{{11}}{{10}} + 3{\left( {11} \right)^2}\dfrac{1}{{{{\left( {10} \right)}^2}}}\dfrac{{11}}{{10}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}}\dfrac{{11}}{{10}} = k\dfrac{{11}}{{10}}\]
Here we shall apply ${a^m}{a^n} = {a^{m + n}}$.
$ \Rightarrow \dfrac{{11}}{{10}} + 2{\left( {11} \right)^{1 + 1}}\dfrac{1}{{{{\left( {10} \right)}^{1 + 1}}}} + 3{\left( {11} \right)^{2 + 1}}\dfrac{1}{{{{\left( {10} \right)}^{2 + 1}}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^{9 + 1}}}}{{{{\left( {10} \right)}^{9 + 1}}}} = k\dfrac{{11}}{{10}}$
$ \Rightarrow \dfrac{{11}}{{10}} + 2\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} + 3\dfrac{{{{\left( {11} \right)}^3}}}{{{{\left( {10} \right)}^3}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^{10}}}}{{{{10}^{10}}}} = k\dfrac{{11}}{{10}}$ …………….$\left( 2 \right)$
Now, we need to subtract $\left( 1 \right)$ from $\left( 2 \right)$
$ \Rightarrow 1 + 2\dfrac{{{{\left( {11} \right)}^1}}}{{\left( {10} \right)}} + 3\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} - \dfrac{{11}}{{10}} - 2\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} - 3\dfrac{{{{\left( {11} \right)}^3}}}{{{{\left( {10} \right)}^3}}} - ..... - 10\dfrac{{{{\left( {11} \right)}^{10}}}}{{{{10}^{10}}}} = k - k\dfrac{{11}}{{10}}$
$ \Rightarrow 1 + 2\dfrac{{{{\left( {11} \right)}^1}}}{{\left( {10} \right)}} - \dfrac{{11}}{{10}} + 3\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} - 2\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} - 9\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} - 10\dfrac{{{{\left( {11} \right)}^{10}}}}{{{{10}^{10}}}} = k\left( {1 - \dfrac{{11}}{{10}}} \right)$
$ \Rightarrow 1 + \dfrac{{{{\left( {11} \right)}^1}}}{{\left( {10} \right)}} + \dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} + ..... + \dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} - 10\dfrac{{{{\left( {11} \right)}^{10}}}}{{{{10}^{10}}}} = k\left( {1 - \dfrac{{11}}{{10}}} \right)$
\[ \Rightarrow 1 + {\left( {\dfrac{{11}}{{10}}} \right)^1} + {\left( {\dfrac{{11}}{{10}}} \right)^2} + ..... + {\left( {\dfrac{{11}}{{10}}} \right)^9} - 10{\left( {\dfrac{{11}}{{10}}} \right)^{10}} = k\left( {\dfrac{{10 - 11}}{{10}}} \right)\]
Now, use the formula $1 + x + {x^2} + .... + {x^n} = \dfrac{{1 - {x^{n + 1}}}}{{1 - x}}$
\[ \Rightarrow k\left( {\dfrac{{ - 1}}{{10}}} \right) = \dfrac{{1\left[ {{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}} - 1} \right]}}{{\dfrac{{11}}{{10}} - 1}} - 10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\]
\[ \Rightarrow k\left( {\dfrac{{ - 1}}{{10}}} \right) = 10\left[ {{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}} - 1} \right] - 10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\]
\[ \Rightarrow - k = 10\left[ {10{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}} - 10 - 10{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}}} \right]\]
\[ \Rightarrow - k = 10\left[ { - 10} \right]\]
\[ \Rightarrow k = 100\]
So, the correct answer is “Option A”.
Note: Simplification of an expression is the process of changing the expression effectively without changing the meaning of an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Moreover, various steps are involved to simplify an expression. Some of the steps are listed below:
If the given expression contains like terms, we need to combine them.
Example: $3x + 2x + 4 = 5x + 4$
We need to split an expression into factors (i.e) the process of finding the factors for the given expression.
Example: ${x^2} + 4x + 3 = (x + 3)(x + 1)$
We need to expand an algebraic expression (i.e) we have to remove the respective brackets of an expression.
Example: $3(a + b) = 3a + 3b$.
We need to cancel out the common terms in an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Formula to be used:
a) $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
b) $\dfrac{1}{{{a^m}}} = {a^{ - m}}$
c)${a^m}{a^n} = {a^{m + n}}$
d) The formula to calculate the sum of the geometric series is as follows.
$1 + x + {x^2} + .... + {x^n} = \dfrac{{1 - {x^{n + 1}}}}{{1 - x}}$ where$x < 1$
Complete step by step answer:
The given equation is ${\left( {10} \right)^9} + 2{\left( {11} \right)^1}{\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ..... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9}$
To find: The value of k.
${\left( {10} \right)^9} + 2{\left( {11} \right)^1}{\left( {10} \right)^8} + 3{\left( {11} \right)^2}{\left( {10} \right)^7} + ..... + 10{\left( {11} \right)^9} = k{\left( {10} \right)^9}$
Let us divide the term ${\left( {10} \right)^9}$ into both sides.
That is $\dfrac{{{{\left( {10} \right)}^9}}}{{{{\left( {10} \right)}^9}}} + \dfrac{{2{{\left( {11} \right)}^1}{{\left( {10} \right)}^8}}}{{{{\left( {10} \right)}^9}}} + {\dfrac{{3{{\left( {11} \right)}^2}\left( {10} \right)}}{{{{\left( {10} \right)}^9}}}^7} + ..... + \dfrac{{10{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} = k\dfrac{{{{\left( {10} \right)}^9}}}{{{{\left( {10} \right)}^9}}}$
We shall apply $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$here.
$ \Rightarrow 1 + 2{\left( {11} \right)^1}{\left( {10} \right)^{8 - 9}} + 3{\left( {11} \right)^2}{\left( {10} \right)^{7 - 9}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} = k{10^{9 - 9}}$
$ \Rightarrow 1 + 2{\left( {11} \right)^1}{\left( {10} \right)^{ - 1}} + 3{\left( {11} \right)^2}{\left( {10} \right)^{ - 2}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} = k{10^0}$
Now, we shall apply $\dfrac{1}{{{a^m}}} = {a^{ - m}}$.
$ \Rightarrow 1 + 2{\left( {11} \right)^1}\dfrac{1}{{\left( {10} \right)}} + 3{\left( {11} \right)^2}\dfrac{1}{{{{\left( {10} \right)}^2}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} = k$ ………….$\left( 1 \right)$
Now, we shall multiply the term $\dfrac{{11}}{{10}}$ on both sides.
\[\dfrac{{11}}{{10}} + 2{\left( {11} \right)^1}\dfrac{1}{{\left( {10} \right)}}\dfrac{{11}}{{10}} + 3{\left( {11} \right)^2}\dfrac{1}{{{{\left( {10} \right)}^2}}}\dfrac{{11}}{{10}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}}\dfrac{{11}}{{10}} = k\dfrac{{11}}{{10}}\]
Here we shall apply ${a^m}{a^n} = {a^{m + n}}$.
$ \Rightarrow \dfrac{{11}}{{10}} + 2{\left( {11} \right)^{1 + 1}}\dfrac{1}{{{{\left( {10} \right)}^{1 + 1}}}} + 3{\left( {11} \right)^{2 + 1}}\dfrac{1}{{{{\left( {10} \right)}^{2 + 1}}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^{9 + 1}}}}{{{{\left( {10} \right)}^{9 + 1}}}} = k\dfrac{{11}}{{10}}$
$ \Rightarrow \dfrac{{11}}{{10}} + 2\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} + 3\dfrac{{{{\left( {11} \right)}^3}}}{{{{\left( {10} \right)}^3}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^{10}}}}{{{{10}^{10}}}} = k\dfrac{{11}}{{10}}$ …………….$\left( 2 \right)$
Now, we need to subtract $\left( 1 \right)$ from $\left( 2 \right)$
$ \Rightarrow 1 + 2\dfrac{{{{\left( {11} \right)}^1}}}{{\left( {10} \right)}} + 3\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} - \dfrac{{11}}{{10}} - 2\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} - 3\dfrac{{{{\left( {11} \right)}^3}}}{{{{\left( {10} \right)}^3}}} - ..... - 10\dfrac{{{{\left( {11} \right)}^{10}}}}{{{{10}^{10}}}} = k - k\dfrac{{11}}{{10}}$
$ \Rightarrow 1 + 2\dfrac{{{{\left( {11} \right)}^1}}}{{\left( {10} \right)}} - \dfrac{{11}}{{10}} + 3\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} - 2\dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} + ..... + 10\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} - 9\dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} - 10\dfrac{{{{\left( {11} \right)}^{10}}}}{{{{10}^{10}}}} = k\left( {1 - \dfrac{{11}}{{10}}} \right)$
$ \Rightarrow 1 + \dfrac{{{{\left( {11} \right)}^1}}}{{\left( {10} \right)}} + \dfrac{{{{\left( {11} \right)}^2}}}{{{{\left( {10} \right)}^2}}} + ..... + \dfrac{{{{\left( {11} \right)}^9}}}{{{{\left( {10} \right)}^9}}} - 10\dfrac{{{{\left( {11} \right)}^{10}}}}{{{{10}^{10}}}} = k\left( {1 - \dfrac{{11}}{{10}}} \right)$
\[ \Rightarrow 1 + {\left( {\dfrac{{11}}{{10}}} \right)^1} + {\left( {\dfrac{{11}}{{10}}} \right)^2} + ..... + {\left( {\dfrac{{11}}{{10}}} \right)^9} - 10{\left( {\dfrac{{11}}{{10}}} \right)^{10}} = k\left( {\dfrac{{10 - 11}}{{10}}} \right)\]
Now, use the formula $1 + x + {x^2} + .... + {x^n} = \dfrac{{1 - {x^{n + 1}}}}{{1 - x}}$
\[ \Rightarrow k\left( {\dfrac{{ - 1}}{{10}}} \right) = \dfrac{{1\left[ {{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}} - 1} \right]}}{{\dfrac{{11}}{{10}} - 1}} - 10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\]
\[ \Rightarrow k\left( {\dfrac{{ - 1}}{{10}}} \right) = 10\left[ {{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}} - 1} \right] - 10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\]
\[ \Rightarrow - k = 10\left[ {10{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}} - 10 - 10{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}}} \right]\]
\[ \Rightarrow - k = 10\left[ { - 10} \right]\]
\[ \Rightarrow k = 100\]
So, the correct answer is “Option A”.
Note: Simplification of an expression is the process of changing the expression effectively without changing the meaning of an expression.
Here, in this question, we need to apply the BODMAS rule (i.e.) we need to calculate the brackets first and then orders, then division or multiplication, and finally we need to add or subtract.
Moreover, various steps are involved to simplify an expression. Some of the steps are listed below:
If the given expression contains like terms, we need to combine them.
Example: $3x + 2x + 4 = 5x + 4$
We need to split an expression into factors (i.e) the process of finding the factors for the given expression.
Example: ${x^2} + 4x + 3 = (x + 3)(x + 1)$
We need to expand an algebraic expression (i.e) we have to remove the respective brackets of an expression.
Example: $3(a + b) = 3a + 3b$.
We need to cancel out the common terms in an expression.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

