
If \[{{\lambda }_{1}}\] and \[{{\lambda }_{2}}\] are the two values of \[\lambda \] such that the roots \[\alpha \] and \[\beta \] of the quadratic equation, \[\lambda \left( {{x}^{2}}-x \right)+x+5=0\] satisfy \[\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }+\dfrac{4}{5}=0\] , then \[\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}^{2}}+\dfrac{{{\lambda }_{2}}}{{{\lambda }_{1}}^{2}}\] is equal to
A.536
B.512
C.504
D.488
Answer
604.5k+ views
Hint:Transform \[\lambda \left( {{x}^{2}}-x \right)+x+5=0\] as \[\lambda {{x}^{2}}+x\left( 1-\lambda \right)+5=0\] . We know the formula of sum of roots, of the quadratic equation \[a{{x}^{2}}+bx+c=0\] , Sum of roots = \[\dfrac{-b}{a}\] and Product of roots = \[\dfrac{c}{a}\] . Apply this formula for the quadratic equation \[\lambda {{x}^{2}}+x\left( 1-\lambda \right)+5=0\] . Solve \[\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }+\dfrac{4}{5}=0\] . Then using the formula, \[{{\left( \alpha +\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \Rightarrow {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}}\] find the value of \[{{\alpha }^{2}}+{{\beta }^{2}}\] . Put the value of \[({{\alpha }^{2}}+{{\beta }^{2}})\] and \[\alpha \beta \] in the equation \[\dfrac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta }=\dfrac{-4}{5}\] . Solving this, we get a quadratic equation in \[\lambda \] which has \[{{\lambda }_{1}}\] and \[{{\lambda }_{2}}\] as its roots. Using the formula of Sum of roots and Products of roots. Using the formula, \[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)\] get the value of \[{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}\] . Now, using the formula, \[{{\left( \alpha +\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \Rightarrow {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}}\] get the value of
\[{{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}\] and then solve it further.
Complete step-by-step answer:
According to the question, we have
\[\lambda \left( {{x}^{2}}-x \right)+x+5=0\] …………………..(1)
Transforming the above quadratic equation in form of \[a{{x}^{2}}+bx+c=0\] , we get
\[\begin{align}
& \lambda \left( {{x}^{2}}-x \right)+x+5=0 \\
& \Rightarrow \lambda {{x}^{2}}-\lambda x+x+5=0 \\
\end{align}\]
\[\Rightarrow \lambda {{x}^{2}}+x\left( 1-\lambda \right)+5=0\] …………………(2)
We know the formula of sum of roots, of the quadratic equation \[a{{x}^{2}}+bx+c=0\] ,
Sum of roots = \[\dfrac{-b}{a}\] …………………..(3)
Product of roots = \[\dfrac{c}{a}\] ………………………(4)
Similarly, for the quadratic equation \[\lambda {{x}^{2}}+x\left( 1-\lambda \right)+5=0\] , we have \[\alpha \] and \[\beta \] as its roots,
Using equation (3), we get
Sum of roots, \[\alpha +\beta =\dfrac{-\left( 1-\lambda \right)}{\lambda }\] ………………..(5)
Product of roots, \[\alpha \beta =\dfrac{5}{\lambda }\] …………………(6)
According to the information provided in the question, we also have
\[\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }+\dfrac{4}{5}=0\]
\[\dfrac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta }=\dfrac{-4}{5}\] …………………….(7)
We know the formula, \[{{\left( \alpha +\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \Rightarrow {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}}\] …………(8)
From equation (5), equation (6), and equation (8), we get
\[\begin{align}
& {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}} \\
& \Rightarrow {{\left\{ \left( \dfrac{-(1-\lambda )}{\lambda } \right) \right\}}^{2}}-2.\dfrac{5}{\lambda }={{\alpha }^{2}}+{{\beta }^{2}} \\
& \Rightarrow \dfrac{1+{{\lambda }^{2}}-2\lambda -10\lambda }{{{\lambda }^{2}}}={{\alpha }^{2}}+{{\beta }^{2}} \\
\end{align}\]
\[\Rightarrow \dfrac{{{\lambda }^{2}}-12\lambda +1}{{{\lambda }^{2}}}={{\alpha }^{2}}+{{\beta }^{2}}\] ………………….(9)
Now, from equation (6), equation (7), and equation (9), we get
\[\dfrac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta }=\dfrac{-4}{5}\]
\[\begin{align}
& \dfrac{\dfrac{{{\lambda }^{2}}-12\lambda +1}{{{\lambda }^{2}}}}{\dfrac{5}{\lambda }}=\dfrac{-4}{5} \\
& \Rightarrow \dfrac{{{\lambda }^{2}}-12\lambda +1}{5\lambda }=\dfrac{-4}{5} \\
& \Rightarrow {{\lambda }^{2}}-12\lambda +1=-4\lambda \\
& \Rightarrow {{\lambda }^{2}}-12\lambda +4\lambda +1=0 \\
\end{align}\]
\[\Rightarrow {{\lambda }^{2}}-8\lambda +1=0\] ………………..(10)
The above equation is quadratic in \[\lambda \] whose roots are \[{{\lambda }_{1}}\] and \[{{\lambda }_{2}}\] .
Using equation (3) and equation (4), we can get the sum and products of roots.
Sum of roots, \[{{\lambda }_{1}}+{{\lambda }_{2}}=8\] ………………..(11)
Product of roots, \[{{\lambda }_{1}}{{\lambda }_{2}}=1\] …………………(12)
We have to find the value of \[\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}^{2}}+\dfrac{{{\lambda }_{2}}}{{{\lambda }_{1}}^{2}}\] …………….(13)
On solving equation (13), we get
\[\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}^{2}}+\dfrac{{{\lambda }_{2}}}{{{\lambda }_{1}}^{2}}\]
\[=\dfrac{{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}}{{{\lambda }_{2}}^{2}{{\lambda }_{1}}^{2}}\]
\[=\dfrac{{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}}{{{({{\lambda }_{1}}{{\lambda }_{2}})}^{2}}}\] …………………..(14)
We know the formula, \[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)\] .
Now, replacing a by \[{{\lambda }_{1}}\] and b by \[{{\lambda }_{2}}\] in the above formula, we get
\[{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}=\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)\left( {{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}-{{\lambda }_{1}}{{\lambda }_{2}} \right)\] …………………(15)
From equation (14) and equation (15), we have
\[=\dfrac{{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}}{{{({{\lambda }_{1}}{{\lambda }_{2}})}^{2}}}\]
\[=\dfrac{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)\left( {{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}-{{\lambda }_{1}}{{\lambda }_{2}} \right)}{{{({{\lambda }_{1}}{{\lambda }_{2}})}^{2}}}\] …………………..(16)
We know the formula, \[{{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)}^{2}}={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}+2{{\lambda }_{1}}{{\lambda }_{2}}\Rightarrow {{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)}^{2}}-2{{\lambda }_{1}}{{\lambda }_{2}}={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}\] .
Now, using equation (11) and equation (12), we get
\[\begin{align}
& {{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)}^{2}}-2{{\lambda }_{1}}{{\lambda }_{2}}={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2} \\
& \Rightarrow {{(8)}^{2}}-2.1={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2} \\
\end{align}\]
\[\Rightarrow 62={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}\] …………………..(17)
Now, from equation (11), equation (12), equation (16), and equation (17), we get
\[=\dfrac{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)\left( {{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}-{{\lambda }_{1}}{{\lambda }_{2}} \right)}{{{({{\lambda }_{1}}{{\lambda }_{2}})}^{2}}}\]
\[\begin{align}
& =\dfrac{\left( 8 \right)\left( 62-1 \right)}{{{(1)}^{2}}} \\
& =\dfrac{8.61}{1} \\
& =488 \\
\end{align}\]
So, the value of \[\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}^{2}}+\dfrac{{{\lambda }_{2}}}{{{\lambda }_{1}}^{2}}\] is 488.
Hence, the correct option is (D).
Note: This question involves a little bit longer method which leads to calculation mistakes. As each step matters so, approach this question step by step. Also, for this question one can miss the point that \[{{\lambda }_{1}}\] and \[{{\lambda }_{2}}\] are the roots of the equation \[{{\lambda }^{2}}-8\lambda +1=0\] .
\[{{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}\] and then solve it further.
Complete step-by-step answer:
According to the question, we have
\[\lambda \left( {{x}^{2}}-x \right)+x+5=0\] …………………..(1)
Transforming the above quadratic equation in form of \[a{{x}^{2}}+bx+c=0\] , we get
\[\begin{align}
& \lambda \left( {{x}^{2}}-x \right)+x+5=0 \\
& \Rightarrow \lambda {{x}^{2}}-\lambda x+x+5=0 \\
\end{align}\]
\[\Rightarrow \lambda {{x}^{2}}+x\left( 1-\lambda \right)+5=0\] …………………(2)
We know the formula of sum of roots, of the quadratic equation \[a{{x}^{2}}+bx+c=0\] ,
Sum of roots = \[\dfrac{-b}{a}\] …………………..(3)
Product of roots = \[\dfrac{c}{a}\] ………………………(4)
Similarly, for the quadratic equation \[\lambda {{x}^{2}}+x\left( 1-\lambda \right)+5=0\] , we have \[\alpha \] and \[\beta \] as its roots,
Using equation (3), we get
Sum of roots, \[\alpha +\beta =\dfrac{-\left( 1-\lambda \right)}{\lambda }\] ………………..(5)
Product of roots, \[\alpha \beta =\dfrac{5}{\lambda }\] …………………(6)
According to the information provided in the question, we also have
\[\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }+\dfrac{4}{5}=0\]
\[\dfrac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta }=\dfrac{-4}{5}\] …………………….(7)
We know the formula, \[{{\left( \alpha +\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta \Rightarrow {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}}\] …………(8)
From equation (5), equation (6), and equation (8), we get
\[\begin{align}
& {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta ={{\alpha }^{2}}+{{\beta }^{2}} \\
& \Rightarrow {{\left\{ \left( \dfrac{-(1-\lambda )}{\lambda } \right) \right\}}^{2}}-2.\dfrac{5}{\lambda }={{\alpha }^{2}}+{{\beta }^{2}} \\
& \Rightarrow \dfrac{1+{{\lambda }^{2}}-2\lambda -10\lambda }{{{\lambda }^{2}}}={{\alpha }^{2}}+{{\beta }^{2}} \\
\end{align}\]
\[\Rightarrow \dfrac{{{\lambda }^{2}}-12\lambda +1}{{{\lambda }^{2}}}={{\alpha }^{2}}+{{\beta }^{2}}\] ………………….(9)
Now, from equation (6), equation (7), and equation (9), we get
\[\dfrac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta }=\dfrac{-4}{5}\]
\[\begin{align}
& \dfrac{\dfrac{{{\lambda }^{2}}-12\lambda +1}{{{\lambda }^{2}}}}{\dfrac{5}{\lambda }}=\dfrac{-4}{5} \\
& \Rightarrow \dfrac{{{\lambda }^{2}}-12\lambda +1}{5\lambda }=\dfrac{-4}{5} \\
& \Rightarrow {{\lambda }^{2}}-12\lambda +1=-4\lambda \\
& \Rightarrow {{\lambda }^{2}}-12\lambda +4\lambda +1=0 \\
\end{align}\]
\[\Rightarrow {{\lambda }^{2}}-8\lambda +1=0\] ………………..(10)
The above equation is quadratic in \[\lambda \] whose roots are \[{{\lambda }_{1}}\] and \[{{\lambda }_{2}}\] .
Using equation (3) and equation (4), we can get the sum and products of roots.
Sum of roots, \[{{\lambda }_{1}}+{{\lambda }_{2}}=8\] ………………..(11)
Product of roots, \[{{\lambda }_{1}}{{\lambda }_{2}}=1\] …………………(12)
We have to find the value of \[\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}^{2}}+\dfrac{{{\lambda }_{2}}}{{{\lambda }_{1}}^{2}}\] …………….(13)
On solving equation (13), we get
\[\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}^{2}}+\dfrac{{{\lambda }_{2}}}{{{\lambda }_{1}}^{2}}\]
\[=\dfrac{{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}}{{{\lambda }_{2}}^{2}{{\lambda }_{1}}^{2}}\]
\[=\dfrac{{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}}{{{({{\lambda }_{1}}{{\lambda }_{2}})}^{2}}}\] …………………..(14)
We know the formula, \[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)\] .
Now, replacing a by \[{{\lambda }_{1}}\] and b by \[{{\lambda }_{2}}\] in the above formula, we get
\[{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}=\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)\left( {{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}-{{\lambda }_{1}}{{\lambda }_{2}} \right)\] …………………(15)
From equation (14) and equation (15), we have
\[=\dfrac{{{\lambda }_{1}}^{3}+{{\lambda }_{2}}^{3}}{{{({{\lambda }_{1}}{{\lambda }_{2}})}^{2}}}\]
\[=\dfrac{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)\left( {{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}-{{\lambda }_{1}}{{\lambda }_{2}} \right)}{{{({{\lambda }_{1}}{{\lambda }_{2}})}^{2}}}\] …………………..(16)
We know the formula, \[{{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)}^{2}}={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}+2{{\lambda }_{1}}{{\lambda }_{2}}\Rightarrow {{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)}^{2}}-2{{\lambda }_{1}}{{\lambda }_{2}}={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}\] .
Now, using equation (11) and equation (12), we get
\[\begin{align}
& {{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)}^{2}}-2{{\lambda }_{1}}{{\lambda }_{2}}={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2} \\
& \Rightarrow {{(8)}^{2}}-2.1={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2} \\
\end{align}\]
\[\Rightarrow 62={{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}\] …………………..(17)
Now, from equation (11), equation (12), equation (16), and equation (17), we get
\[=\dfrac{\left( {{\lambda }_{1}}+{{\lambda }_{2}} \right)\left( {{\lambda }_{1}}^{2}+{{\lambda }_{2}}^{2}-{{\lambda }_{1}}{{\lambda }_{2}} \right)}{{{({{\lambda }_{1}}{{\lambda }_{2}})}^{2}}}\]
\[\begin{align}
& =\dfrac{\left( 8 \right)\left( 62-1 \right)}{{{(1)}^{2}}} \\
& =\dfrac{8.61}{1} \\
& =488 \\
\end{align}\]
So, the value of \[\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}^{2}}+\dfrac{{{\lambda }_{2}}}{{{\lambda }_{1}}^{2}}\] is 488.
Hence, the correct option is (D).
Note: This question involves a little bit longer method which leads to calculation mistakes. As each step matters so, approach this question step by step. Also, for this question one can miss the point that \[{{\lambda }_{1}}\] and \[{{\lambda }_{2}}\] are the roots of the equation \[{{\lambda }^{2}}-8\lambda +1=0\] .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

