
If l, m, n are the directions cosines of a line, then prove that ${l^2} + {m^2} + {n^2} = 1$. Hence find the directions angles of the line with the x-axis which makes direction angles of ${135^\circ }$ and ${45^\circ }$ with y and z axis respectively.
Answer
584.1k+ views
Hint: In this particular type of question assume any variable be the angle of any line with the x, y and z axis respectively, so the cosine of the angle is the direction cosines of the line so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Proof –
Consider a line LL’ which makes an angle $\alpha ,\beta ,\theta $ with the x, y and z axis respectively as shown in the above figure.
It is given that l, m and n are the direction cosines of a line.
Therefore, $l = \cos \alpha $, $m = \cos \beta $ and $n = \cos \theta $
Therefore, ${l^2} + {m^2} + {n^2} = {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\theta $.................. (1)
Now consider a vector, $\vec p$ be any non-zero vector along the line LL’
Let, $\vec p = {p_1}\hat i + {p_2}\hat j + {p_3}\hat k$.................. (2)
Now since $\hat i$ is a unit vector along the x-axis.
Therefore,
$\vec p.\hat i = \left| {\vec p} \right|.\left| {\hat i} \right|\cos \alpha $....................... (3)
Now from equation (2)
$ \Rightarrow \left| {\vec p} \right| = \sqrt {p_1^2 + p_2^2 + p_3^2} $
And
$\left| {\hat i} \right| = 1$
Now from equation (3) we have,
Now from equation (3) we have,
$ \Rightarrow \left( {{p_1}\hat i + {p_2}\hat j + {p_3}\hat k} \right).\hat i = \sqrt {p_1^2 + p_2^2 + p_3^2} .\left( 1 \right)\cos \alpha $
$ \Rightarrow \left( {{p_1} + 0 + 0} \right) = \sqrt {p_1^2 + p_2^2 + p_3^2} .\left( 1 \right)\cos \alpha $, $\left[ {\because \hat i.\hat i = 1,\hat i.\hat j = 0,\hat i.\hat k = 0} \right]$
\[ \Rightarrow \cos \alpha = \dfrac{{{p_1}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]
Similarly,
\[ \Rightarrow \cos \beta = \dfrac{{{p_2}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]
\[ \Rightarrow \cos \theta = \dfrac{{{p_3}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]
Now substitute these values in equation (1) we have,
$ \Rightarrow {l^2} + {m^2} + {n^2} = {\left( {\dfrac{{{p_1}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2} + {\left( {\dfrac{{{p_2}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2} + {\left( {\dfrac{{{p_3}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2}$
$ \Rightarrow {l^2} + {m^2} + {n^2} = \left( {\dfrac{{p_1^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) + \left( {\dfrac{{p_2^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) + \left( {\dfrac{{p_3^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right)$
$ \Rightarrow {l^2} + {m^2} + {n^2} = \left( {\dfrac{{p_1^2 + p_2^2 + p_3^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) = 1$
Hence proved.
So from equation (1) we have,
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\theta = 1$
Now it is given that the line makes an angle of ${135^\circ }$ and ${45^\circ }$ with y and z axis respectively.
Therefore, $\beta = {135^\circ },\theta = {45^\circ }$
Now substitute these values in the above equation we have,
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}{135^\circ } + {\cos ^2}{45^\circ } = 1$
$ \Rightarrow {\cos ^2}\alpha + {\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} = 1$, $\left[ {\because \cos {{135}^\circ } = \dfrac{{ - 1}}{{\sqrt 2 }},\cos {{45}^\circ } = \dfrac{1}{{\sqrt 2 }}} \right]$
Now simplify this we have,
$ \Rightarrow {\cos ^2}\alpha + \dfrac{1}{2} + \dfrac{1}{2} = 1$
$ \Rightarrow {\cos ^2}\alpha + 1 = 1$
$ \Rightarrow {\cos ^2}\alpha = 0$
$ \Rightarrow \cos \alpha = 0$
$ \Rightarrow \cos \alpha = \cos {90^\circ }$
$ \Rightarrow \alpha = {90^\circ }$
So the line makes an angle 90 degrees with the x-axis.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the values of the standard trigonometric angles which is stated above, then simply substitute the values in the equation and simplify as above we will get the required direction angle of line with the x-axis.
Complete step-by-step answer:
Proof –
Consider a line LL’ which makes an angle $\alpha ,\beta ,\theta $ with the x, y and z axis respectively as shown in the above figure.
It is given that l, m and n are the direction cosines of a line.
Therefore, $l = \cos \alpha $, $m = \cos \beta $ and $n = \cos \theta $
Therefore, ${l^2} + {m^2} + {n^2} = {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\theta $.................. (1)
Now consider a vector, $\vec p$ be any non-zero vector along the line LL’
Let, $\vec p = {p_1}\hat i + {p_2}\hat j + {p_3}\hat k$.................. (2)
Now since $\hat i$ is a unit vector along the x-axis.
Therefore,
$\vec p.\hat i = \left| {\vec p} \right|.\left| {\hat i} \right|\cos \alpha $....................... (3)
Now from equation (2)
$ \Rightarrow \left| {\vec p} \right| = \sqrt {p_1^2 + p_2^2 + p_3^2} $
And
$\left| {\hat i} \right| = 1$
Now from equation (3) we have,
Now from equation (3) we have,
$ \Rightarrow \left( {{p_1}\hat i + {p_2}\hat j + {p_3}\hat k} \right).\hat i = \sqrt {p_1^2 + p_2^2 + p_3^2} .\left( 1 \right)\cos \alpha $
$ \Rightarrow \left( {{p_1} + 0 + 0} \right) = \sqrt {p_1^2 + p_2^2 + p_3^2} .\left( 1 \right)\cos \alpha $, $\left[ {\because \hat i.\hat i = 1,\hat i.\hat j = 0,\hat i.\hat k = 0} \right]$
\[ \Rightarrow \cos \alpha = \dfrac{{{p_1}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]
Similarly,
\[ \Rightarrow \cos \beta = \dfrac{{{p_2}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]
\[ \Rightarrow \cos \theta = \dfrac{{{p_3}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}\]
Now substitute these values in equation (1) we have,
$ \Rightarrow {l^2} + {m^2} + {n^2} = {\left( {\dfrac{{{p_1}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2} + {\left( {\dfrac{{{p_2}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2} + {\left( {\dfrac{{{p_3}}}{{\sqrt {p_1^2 + p_2^2 + p_3^2} }}} \right)^2}$
$ \Rightarrow {l^2} + {m^2} + {n^2} = \left( {\dfrac{{p_1^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) + \left( {\dfrac{{p_2^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) + \left( {\dfrac{{p_3^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right)$
$ \Rightarrow {l^2} + {m^2} + {n^2} = \left( {\dfrac{{p_1^2 + p_2^2 + p_3^2}}{{p_1^2 + p_2^2 + p_3^2}}} \right) = 1$
Hence proved.
So from equation (1) we have,
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\theta = 1$
Now it is given that the line makes an angle of ${135^\circ }$ and ${45^\circ }$ with y and z axis respectively.
Therefore, $\beta = {135^\circ },\theta = {45^\circ }$
Now substitute these values in the above equation we have,
$ \Rightarrow {\cos ^2}\alpha + {\cos ^2}{135^\circ } + {\cos ^2}{45^\circ } = 1$
$ \Rightarrow {\cos ^2}\alpha + {\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} = 1$, $\left[ {\because \cos {{135}^\circ } = \dfrac{{ - 1}}{{\sqrt 2 }},\cos {{45}^\circ } = \dfrac{1}{{\sqrt 2 }}} \right]$
Now simplify this we have,
$ \Rightarrow {\cos ^2}\alpha + \dfrac{1}{2} + \dfrac{1}{2} = 1$
$ \Rightarrow {\cos ^2}\alpha + 1 = 1$
$ \Rightarrow {\cos ^2}\alpha = 0$
$ \Rightarrow \cos \alpha = 0$
$ \Rightarrow \cos \alpha = \cos {90^\circ }$
$ \Rightarrow \alpha = {90^\circ }$
So the line makes an angle 90 degrees with the x-axis.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the values of the standard trigonometric angles which is stated above, then simply substitute the values in the equation and simplify as above we will get the required direction angle of line with the x-axis.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

