
If \[{K_W}\] for water is \[9.62 \times {10^{ - 14}}\] at \[{60^\circ }C\]. Calculate pH of water.
Answer
555.9k+ views
Hint: Dissociation constant (or) Ionic product of water \[{K_W}\] is defined as the product of the molar concentration of hydroxyl ion and hydrogen ion concentration at a constant temperature. For pure water, hydroxyl ion and hydrogen ion concentration must be equal.
Complete step by step answer:
\[{K_W}\] is defined as the product of the molar concentration of hydroxyl ion and hydrogen ion concentration at a constant temperature. It can be written as follows,
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {K_W}\]
It is known that for pure water, hydrogen ion concentration should be equal to hydroxyl ion concentration.
\[\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]\]
\[ \Rightarrow {\left[ {{H^ + }} \right]^2} = {K_W}\]
Thus, for pure water at a constant temperature, hydrogen ion concentration can be obtained as the square root of the ionic product of water.
\[ \Rightarrow {\left[ {{H^ + }} \right]^2} = 9.62 \times {10^{ - 14}}\]
At\[{60^\circ }C\], \[ \Rightarrow \left[ {{H^ + }} \right] = \sqrt {9.62 \times {{10}^{ - 14}}} \]
\[ \Rightarrow \left[ {{H^ + }} \right] = 3.102 \times {10^{ - 7}}\]
It is known that pH is the negative logarithm of the concentration of free hydrogen.
\[pH = - \log \left[ {{H^ + }} \right]\]
\[ \Rightarrow pH = - \log \left[ {3.102 \times {{10}^{ - 7}}} \right]\]
\[pH = 6.50\]
Thus, pH for water is 6.50.
Note: It is known that pH is the measure of hydrogen ion concentration and pOH is the hydroxyl ion concentration.
Thus, the ionic product of water can be explained as similar to hydrogen ion concentration can be written as,
\[p{K_W} = - \log \left[ {{K_W}} \right]\]
But we know that the Ionic product of water \[{K_W}\] is defined as the product of the molar concentration of hydroxyl ion and hydrogen ion concentration at a constant temperature.
Thus, \[p{K_W} = - \log \left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]\]
\[ \Rightarrow p{K_W} = - \log \left[ {{H^ + }} \right] - \log \left[ {O{H^ - }} \right]\]
\[ \Rightarrow p{K_W} = pH + pOH\]
Thus, \[p{K_W}\] is the sum of pH and pOH. Thus, if one of concentration{hydrogen ion /hydroxyl ion} is known, then \[{K_W}\] of water is calculated since for pure water, hydroxyl ion and hydrogen ion concentration must be equal. And also if pH/pOH is known, then \[p{K_W}\] the value can be calculated.
Complete step by step answer:
\[{K_W}\] is defined as the product of the molar concentration of hydroxyl ion and hydrogen ion concentration at a constant temperature. It can be written as follows,
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {K_W}\]
It is known that for pure water, hydrogen ion concentration should be equal to hydroxyl ion concentration.
\[\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]\]
\[ \Rightarrow {\left[ {{H^ + }} \right]^2} = {K_W}\]
Thus, for pure water at a constant temperature, hydrogen ion concentration can be obtained as the square root of the ionic product of water.
\[ \Rightarrow {\left[ {{H^ + }} \right]^2} = 9.62 \times {10^{ - 14}}\]
At\[{60^\circ }C\], \[ \Rightarrow \left[ {{H^ + }} \right] = \sqrt {9.62 \times {{10}^{ - 14}}} \]
\[ \Rightarrow \left[ {{H^ + }} \right] = 3.102 \times {10^{ - 7}}\]
It is known that pH is the negative logarithm of the concentration of free hydrogen.
\[pH = - \log \left[ {{H^ + }} \right]\]
\[ \Rightarrow pH = - \log \left[ {3.102 \times {{10}^{ - 7}}} \right]\]
\[pH = 6.50\]
Thus, pH for water is 6.50.
Note: It is known that pH is the measure of hydrogen ion concentration and pOH is the hydroxyl ion concentration.
Thus, the ionic product of water can be explained as similar to hydrogen ion concentration can be written as,
\[p{K_W} = - \log \left[ {{K_W}} \right]\]
But we know that the Ionic product of water \[{K_W}\] is defined as the product of the molar concentration of hydroxyl ion and hydrogen ion concentration at a constant temperature.
Thus, \[p{K_W} = - \log \left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]\]
\[ \Rightarrow p{K_W} = - \log \left[ {{H^ + }} \right] - \log \left[ {O{H^ - }} \right]\]
\[ \Rightarrow p{K_W} = pH + pOH\]
Thus, \[p{K_W}\] is the sum of pH and pOH. Thus, if one of concentration{hydrogen ion /hydroxyl ion} is known, then \[{K_W}\] of water is calculated since for pure water, hydroxyl ion and hydrogen ion concentration must be equal. And also if pH/pOH is known, then \[p{K_W}\] the value can be calculated.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

