
If $k=\tan {{25}^{\circ }}$ then find $\dfrac{k-1}{k+1}+\dfrac{k+1}{k-1}$.
\[\begin{align}
& A.2\cos ec{{130}^{\circ }} \\
& B.2\cos ec{{45}^{\circ }} \\
& C.2\sec {{130}^{\circ }} \\
& D.2\sec {{400}^{\circ }} \\
\end{align}\]
Answer
575.7k+ views
Hint: In this question, we are given k to be equal to $k=\tan {{25}^{\circ }}$ and we have to evaluate $\dfrac{k-1}{k+1}+\dfrac{k+1}{k-1}$. For this, we will first simplify the given expression in terms of k and then put values of k as $\tan {{25}^{\circ }}$. After this, we will use various trigonometric identities to simplify our answer and obtain the required result in terms of secant or cosecant. Various trigonometric identities that we will use are:
\[\begin{align}
& \left( i \right)1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \\
& \left( ii \right)\tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \left( iii \right)\cos \theta =\dfrac{1}{\sec \theta } \\
& \left( iv \right){{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta \\
& \left( v \right)\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \\
\end{align}\]
Complete step by step answer:
Here we are given k as $\tan {{25}^{\circ }}$. And we need to find the value of $\dfrac{k-1}{k+1}+\dfrac{k+1}{k-1}$.
Let us first simplify the given expression before putting in the value of k.
Given expression is $\dfrac{k-1}{k+1}+\dfrac{k+1}{k-1}$.
Taking LCM (k+1)(k-1), we get:
\[\begin{align}
& \Rightarrow \dfrac{\left( k-1 \right)\left( k-1 \right)+\left( k+1 \right)\left( k+1 \right)}{\left( k+1 \right)\left( k-1 \right)} \\
& \Rightarrow \dfrac{{{\left( k-1 \right)}^{2}}+{{\left( k+1 \right)}^{2}}}{\left( k+1 \right)\left( k-1 \right)} \\
\end{align}\]
As we know, basic algebraic identities are ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab,{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\text{ and }\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. So using them in above expression, we get:
\[\begin{align}
& \Rightarrow \dfrac{{{k}^{2}}+1-2k+{{k}^{2}}+1+2k}{{{k}^{2}}-1} \\
& \Rightarrow \dfrac{2{{k}^{2}}+2}{{{k}^{2}}-1} \\
& \Rightarrow \dfrac{2\left( {{k}^{2}}+1 \right)}{{{k}^{2}}-1} \\
\end{align}\]
Now let us put the value of k as $\tan {{25}^{\circ }}$ we get:
\[\Rightarrow \dfrac{2\left( {{\tan }^{2}}{{25}^{\circ }}+1 \right)}{{{\tan }^{2}}{{25}^{\circ }}-1}\]
We know that, $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ therefore, numerator of this expression will become $2{{\sec }^{2}}{{25}^{\circ }}$. Hence, we get:
\[\Rightarrow \dfrac{2{{\sec }^{2}}{{25}^{\circ }}}{{{\tan }^{2}}{{25}^{\circ }}-1}\]
Using $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in denominator we get:
\[\Rightarrow \dfrac{2{{\sec }^{2}}{{25}^{\circ }}}{\dfrac{si{{n}^{2}}{{25}^{\circ }}}{{{\cos }^{2}}{{25}^{\circ }}}-1}\]
Taking LCM in denominator we get:
\[\Rightarrow \dfrac{2{{\sec }^{2}}{{25}^{\circ }}}{\dfrac{si{{n}^{2}}{{25}^{\circ }}-{{\cos }^{2}}{{25}^{\circ }}}{{{\cos }^{2}}{{25}^{\circ }}}}\]
Simplifying we get:
\[\Rightarrow \dfrac{2{{\sec }^{2}}{{25}^{\circ }}\cdot {{\cos }^{2}}{{25}^{\circ }}}{si{{n}^{2}}{{25}^{\circ }}-{{\cos }^{2}}{{25}^{\circ }}}\]
Now, we know $\cos \theta =\dfrac{1}{\sec \theta }$ so ${{\cos }^{2}}{{25}^{\circ }}=\dfrac{1}{{{\sec }^{2}}{{25}^{\circ }}}$ hence we get:
\[\begin{align}
& \Rightarrow \dfrac{\dfrac{2{{\sec }^{2}}{{25}^{\circ }}}{{{\sec }^{2}}{{25}^{\circ }}}}{si{{n}^{2}}{{25}^{\circ }}-{{\cos }^{2}}{{25}^{\circ }}} \\
& \Rightarrow \dfrac{2}{si{{n}^{2}}{{25}^{\circ }}-{{\cos }^{2}}{{25}^{\circ }}} \\
\end{align}\]
Taking negative sign common in denominator we get:
\[\Rightarrow \dfrac{2}{-\left( {{\cos }^{2}}{{25}^{\circ }}-si{{n}^{2}}{{25}^{\circ }} \right)}\]
Using ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta $ in the denominator we get:
\[\Rightarrow \dfrac{2}{-\cos {{50}^{\circ }}}\]
Now we can see none of the options have negative signs, so changing the angle of $\cos \theta $ to remove negative signs. As we know $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $ so putting $\theta ={{50}^{\circ }}$ we get \[-\cos {{50}^{\circ }}=\cos \left( {{180}^{\circ }}-\theta \right)=\cos {{130}^{\circ }}\], so expression becomes $\dfrac{2}{\cos {{130}^{\circ }}}$.
Using $\cos \theta =\dfrac{1}{\sec \theta }$ we get:
\[\begin{align}
& \Rightarrow \dfrac{2}{\dfrac{1}{\sec {{130}^{\circ }}}} \\
& \Rightarrow 2\sec {{130}^{\circ }} \\
\end{align}\]
Hence, for $k=\tan {{25}^{\circ }}$,$\dfrac{k-1}{k+1}+\dfrac{k+1}{k-1}$ will be equal to $2\sec {{130}^{\circ }}$.
So, the correct answer is “Option C”.
Note: Students should take care of signs while applying algebraic identities. Students should not get confused with the reciprocal of $\sin \theta \text{ and }\cos \theta $. Reciprocal of $\sin \theta $ is $\text{cosec}\theta $ and reciprocal of $\cos \theta $ is $\sec \theta $. Also take care of signs while using trigonometric identities such as $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta $. Students should remember properties such as $\cos \left( {{180}^{\circ }}-\theta \right),\cos \left( {{180}^{\circ }}+\theta \right),\sin \left( {{90}^{\circ }}+\theta \right)$ and others.
\[\begin{align}
& \left( i \right)1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \\
& \left( ii \right)\tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \left( iii \right)\cos \theta =\dfrac{1}{\sec \theta } \\
& \left( iv \right){{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta \\
& \left( v \right)\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \\
\end{align}\]
Complete step by step answer:
Here we are given k as $\tan {{25}^{\circ }}$. And we need to find the value of $\dfrac{k-1}{k+1}+\dfrac{k+1}{k-1}$.
Let us first simplify the given expression before putting in the value of k.
Given expression is $\dfrac{k-1}{k+1}+\dfrac{k+1}{k-1}$.
Taking LCM (k+1)(k-1), we get:
\[\begin{align}
& \Rightarrow \dfrac{\left( k-1 \right)\left( k-1 \right)+\left( k+1 \right)\left( k+1 \right)}{\left( k+1 \right)\left( k-1 \right)} \\
& \Rightarrow \dfrac{{{\left( k-1 \right)}^{2}}+{{\left( k+1 \right)}^{2}}}{\left( k+1 \right)\left( k-1 \right)} \\
\end{align}\]
As we know, basic algebraic identities are ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab,{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\text{ and }\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. So using them in above expression, we get:
\[\begin{align}
& \Rightarrow \dfrac{{{k}^{2}}+1-2k+{{k}^{2}}+1+2k}{{{k}^{2}}-1} \\
& \Rightarrow \dfrac{2{{k}^{2}}+2}{{{k}^{2}}-1} \\
& \Rightarrow \dfrac{2\left( {{k}^{2}}+1 \right)}{{{k}^{2}}-1} \\
\end{align}\]
Now let us put the value of k as $\tan {{25}^{\circ }}$ we get:
\[\Rightarrow \dfrac{2\left( {{\tan }^{2}}{{25}^{\circ }}+1 \right)}{{{\tan }^{2}}{{25}^{\circ }}-1}\]
We know that, $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ therefore, numerator of this expression will become $2{{\sec }^{2}}{{25}^{\circ }}$. Hence, we get:
\[\Rightarrow \dfrac{2{{\sec }^{2}}{{25}^{\circ }}}{{{\tan }^{2}}{{25}^{\circ }}-1}\]
Using $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in denominator we get:
\[\Rightarrow \dfrac{2{{\sec }^{2}}{{25}^{\circ }}}{\dfrac{si{{n}^{2}}{{25}^{\circ }}}{{{\cos }^{2}}{{25}^{\circ }}}-1}\]
Taking LCM in denominator we get:
\[\Rightarrow \dfrac{2{{\sec }^{2}}{{25}^{\circ }}}{\dfrac{si{{n}^{2}}{{25}^{\circ }}-{{\cos }^{2}}{{25}^{\circ }}}{{{\cos }^{2}}{{25}^{\circ }}}}\]
Simplifying we get:
\[\Rightarrow \dfrac{2{{\sec }^{2}}{{25}^{\circ }}\cdot {{\cos }^{2}}{{25}^{\circ }}}{si{{n}^{2}}{{25}^{\circ }}-{{\cos }^{2}}{{25}^{\circ }}}\]
Now, we know $\cos \theta =\dfrac{1}{\sec \theta }$ so ${{\cos }^{2}}{{25}^{\circ }}=\dfrac{1}{{{\sec }^{2}}{{25}^{\circ }}}$ hence we get:
\[\begin{align}
& \Rightarrow \dfrac{\dfrac{2{{\sec }^{2}}{{25}^{\circ }}}{{{\sec }^{2}}{{25}^{\circ }}}}{si{{n}^{2}}{{25}^{\circ }}-{{\cos }^{2}}{{25}^{\circ }}} \\
& \Rightarrow \dfrac{2}{si{{n}^{2}}{{25}^{\circ }}-{{\cos }^{2}}{{25}^{\circ }}} \\
\end{align}\]
Taking negative sign common in denominator we get:
\[\Rightarrow \dfrac{2}{-\left( {{\cos }^{2}}{{25}^{\circ }}-si{{n}^{2}}{{25}^{\circ }} \right)}\]
Using ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta $ in the denominator we get:
\[\Rightarrow \dfrac{2}{-\cos {{50}^{\circ }}}\]
Now we can see none of the options have negative signs, so changing the angle of $\cos \theta $ to remove negative signs. As we know $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $ so putting $\theta ={{50}^{\circ }}$ we get \[-\cos {{50}^{\circ }}=\cos \left( {{180}^{\circ }}-\theta \right)=\cos {{130}^{\circ }}\], so expression becomes $\dfrac{2}{\cos {{130}^{\circ }}}$.
Using $\cos \theta =\dfrac{1}{\sec \theta }$ we get:
\[\begin{align}
& \Rightarrow \dfrac{2}{\dfrac{1}{\sec {{130}^{\circ }}}} \\
& \Rightarrow 2\sec {{130}^{\circ }} \\
\end{align}\]
Hence, for $k=\tan {{25}^{\circ }}$,$\dfrac{k-1}{k+1}+\dfrac{k+1}{k-1}$ will be equal to $2\sec {{130}^{\circ }}$.
So, the correct answer is “Option C”.
Note: Students should take care of signs while applying algebraic identities. Students should not get confused with the reciprocal of $\sin \theta \text{ and }\cos \theta $. Reciprocal of $\sin \theta $ is $\text{cosec}\theta $ and reciprocal of $\cos \theta $ is $\sec \theta $. Also take care of signs while using trigonometric identities such as $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta ,{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta $. Students should remember properties such as $\cos \left( {{180}^{\circ }}-\theta \right),\cos \left( {{180}^{\circ }}+\theta \right),\sin \left( {{90}^{\circ }}+\theta \right)$ and others.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

