
If k,n are positive integers and ${{s}_{k}}={{1}^{k}}+{{2}^{k}}+...+{{n}^{k}}$ , then show that $\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}={{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)}$ and evaluate ${{s}_{4}}.$ \[\]
Answer
564.6k+ views
Hint: We expand $\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}$ using ${{s}_{k}}$ and then collect the terms with same base so that we can use the binomial expansion of ${{\left( 1+x \right)}^{a}}$ where $a=1,2,3,...n$. We then simplify to get the proof. We use the expression of sum of first$n$ which is ${{s}_{1}}$, squared $n$ terms which is ${{s}_{2}}$ and cubed $n$ terms which is ${{s}_{3}}$ and the value $n=4$ in proof statement to get ${{s}_{4}}.$\[\]
Complete step-by-step solution:
We know that the binomial expansion of ${{\left( 1+x \right)}^{a}}$ is,
\[\begin{align}
& {{\left( 1+x \right)}^{a+1}}{{=}^{a+1}}{{C}_{0}}{{+}^{a+1}}{{C}_{1}}x{{+}^{a+1}}{{C}_{1}}{{x}^{2}}...{{+}^{a+1}}{{C}_{a+1}}{{x}^{a+1}} \\
& \Rightarrow {{\left( 1+x \right)}^{a+1}}-1-{{x}^{a+1}}{{=}^{a+1}}{{C}_{1}}x{{+}^{a+1}}{{C}_{1}}{{x}^{2}}...{{+}^{a+1}}{{C}_{a}}{{x}^{a}}....(1) \\
\end{align}\]
We are given in the question that
\[{{s}_{k}}={{1}^{k}}+{{2}^{k}}+...+{{n}^{k}}\]
We are also given to prove,
\[\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}={{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)}\]
Let us expand the left hand side of the above summation and have
\[\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}=}\left( ^{m+1}{{C}_{1}} \right){{s}_{1}}+\left( ^{m+1}{{C}_{2}} \right){{s}_{2}}+...+\left( ^{m+1}{{C}_{m}} \right){{s}_{m}}\]
We substitute the value of ${{s}_{k}}$ for each value of $k=1,2,..,m$ and have,
\[\begin{align}
& \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}{{=}^{m+1}}{{C}_{1}}\left( {{1}^{1}}+{{2}^{1}}+...+{{n}^{1}} \right){{+}^{m+1}}{{C}_{2}}\left( {{1}^{2}}+{{2}^{2}}+...+{{n}^{2}} \right)+ \\
& ...{{+}^{m+1}}{{C}_{m}}\left( {{1}^{m}}+{{2}^{m}}+...+{{n}^{m}} \right) \\
\end{align}\]
Let us collect the terms with base 1 and who have exponents $1,2,..m$. Similarly we collect terms with base 2, base 3 and so on in the above equation. We have
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}=\left( ^{m+1}{{C}_{1}}{{1}^{1}}{{+}^{m+1}}{{C}_{2}}{{1}^{2}}{{...}^{m+1}}{{C}_{m}}{{1}^{m}} \right)+\left( ^{m+1}{{C}_{1}}{{2}^{1}}{{+}^{m+1}}{{C}_{2}}{{2}^{2}}{{...}^{m+1}}{{C}_{m}}{{2}^{m}} \right)... \\
& +\left( ^{m+1}{{C}_{1}}{{n}^{1}}{{+}^{m+1}}{{C}_{2}}{{n}^{2}}{{...}^{m+1}}{{C}_{m}}{{n}^{m}} \right).....(2) \\
\end{align}\]
Let us observe the first set of summation$^{m+1}{{C}_{1}}{{1}^{1}}{{+}^{m+1}}{{C}_{2}}{{1}^{2}}{{...}^{m+1}}{{C}_{m}}{{1}^{m}}$. We see that it is almost a binomial expansion in the form ${{\left( 1+x \right)}^{a}}$, but it is missing the first term $^{m+1}{{C}_{0}}$ and the last term $^{m+1}{{C}_{m+1}}{{1}^{m+1}}$. So we use the equation (1) and substitute $x=1$ and $a=m+1$ to have
\[\begin{align}
& {{\left( 1+1 \right)}^{m+1}}-1-{{1}^{m+1}}{{=}^{m+1}}{{C}_{1}}{{1}^{1}}{{+}^{m+1}}{{C}_{1}}{{1}^{2}}...{{+}^{m+1}}{{C}_{m}}{{1}^{m}} \\
& \Rightarrow {{\left( 2 \right)}^{m+1}}-1-{{1}^{m+1}}{{=}^{m+1}}{{C}_{1}}{{1}^{1}}{{+}^{m+1}}{{C}_{1}}{{1}^{2}}...{{+}^{m+1}}{{C}_{m}}{{1}^{m}} \\
\end{align}\]
Similarly we observe the first second set of summation $^{m+1}{{C}_{1}}{{2}^{1}}{{+}^{m+1}}{{C}_{2}}{{2}^{2}}{{...}^{m+1}}{{C}_{m}}{{2}^{m}}$. We see that it is also almost a binomial expansion in the form ${{\left( 1+x \right)}^{a}}$, but it is missing the first term $^{m+1}{{C}_{0}}$ and the last term $^{m+1}{{C}_{m+1}}{{2}^{m+1}}$. So we use the equation (1) and substitute $x=2$ and $a=m+1$ to have
\[\begin{align}
& {{\left( 1+2 \right)}^{m+1}}-1-{{2}^{m+1}}{{=}^{m+1}}{{C}_{1}}{{2}^{1}}{{+}^{m+1}}{{C}_{1}}{{2}^{2}}...{{+}^{m+1}}{{C}_{m}}{{2}^{m}} \\
& \Rightarrow {{\left( 3 \right)}^{m+1}}-1-{{2}^{m+1}}{{=}^{m+1}}{{C}_{1}}{{2}^{1}}{{+}^{m+1}}{{C}_{1}}{{2}^{2}}...{{+}^{m+1}}{{C}_{m}}{{2}^{m}} \\
\end{align}\]
We can similarly substitute $x=3,4...,n$ and find expression of the form ${{\left( 1+x \right)}^{m+1}}-1-{{x}^{m+1}}$ . We replace the summations in equation (2) and get
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}={{\left( 2 \right)}^{m+1}}-1-{{1}^{m+1}}+{{\left( 3 \right)}^{m+1}}-1-{{2}^{m+1}}+...+{{\left( n+1 \right)}^{m+1}}-1-{{n}^{m+1}} \\
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}={{2}^{m+1}}-{{1}^{m+1}}+{{3}^{m+1}}-{{2}^{m+1}}+{{4}^{m+1}}-{{3}^{m+1}} \\
& ...+{{\left( n+1 \right)}^{m+1}}-{{n}^{m+1}}-\left( 1+1+1...n\text{ times} \right) \\
\end{align}\]
We observe that all terms except ${{1}^{m+1}}=1$ and ${{\left( n+1 \right)}^{m+1}}$ cancel out. So we have
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}=-1+{{\left( n+1 \right)}^{m+1}}-n \\
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}={{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)...(3) \\
\end{align}\]
Hence the statement is proved.
We know from the formula of sum of first $n$, squared $n$ and cubed $n$ terms that
\[\begin{align}
& 1+2+3...n=\dfrac{n\left( n+1 \right)}{2}={{s}_{1}} \\
& {{1}^{2}}+{{2}^{2}}+{{3}^{2}}...{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}={{s}_{2}} \\
& {{1}^{3}}+{{2}^{3}}+{{3}^{3}}...{{n}^{3}}={{\left[ \dfrac{n\left( n+1 \right)}{2} \right]}^{2}}={{s}_{3}} \\
\end{align}\]
We now use the above values and putting $n=4$ in equation(3) and get,
\[\begin{align}
& \sum\limits_{r=1}^{4}{^{4+1}{{C}_{r}}{{s}_{r}}}={{\left( n+1 \right)}^{4+1}}-\left( n+1 \right) \\
&{{\Rightarrow }^{5}}{{C}_{1}}{{s}_{1}}{{+}^{5}}{{C}_{2}}{{s}_{2}}{{+}^{5}}{{C}_{3}}{{s}_{3}}{{+}^{5}}{{C}_{4}}{{s}_{4}}={{\left( n+1 \right)}^{5}}-\left( n+1 \right) \\
& \Rightarrow 5\dfrac{n\left( n+1 \right)}{2}+10\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+10\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}+5{{s}_{4}}={{\left( n+1 \right)}^{5}}-\left( n+1 \right) \\
& \Rightarrow 5{{s}_{4}}={{\left( n+1 \right)}^{5}}-\left( n+1 \right)-\dfrac{5n\left( n+1 \right)}{2}+\dfrac{5n\left( n+1 \right)\left( 2n+1 \right)}{3}+\dfrac{5{{n}^{2}}{{\left( n+1 \right)}^{2}}}{2} \\
\end{align}\]
We take $\dfrac{n+1}{6}$ common form the right hand side and get,
\[\begin{align}
& \Rightarrow 5{{s}_{4}}={{\left( n+1 \right)}^{5}}-\left( n+1 \right)-\dfrac{5n\left( n+1 \right)}{2}-\dfrac{5n\left( n+1 \right)\left( 2n+1 \right)}{3}-\dfrac{5{{n}^{2}}{{\left( n+1 \right)}^{2}}}{2} \\
& \Rightarrow 5{{s}_{4}}=\dfrac{n+1}{6}\left( 6{{\left( n+1 \right)}^{4}}-6-15n\left( n+1 \right)-15n\left( 2n+1 \right)-15{{n}^{2}}{{\left( n+1 \right)}^{2}} \right) \\
& \Rightarrow 5{{s}_{4}}=\dfrac{n+1}{6}\left( 6{{n}^{4}}+9{{n}^{3}}+{{n}^{2}}-n \right) \\
& \Rightarrow {{s}_{4}}=\dfrac{n\left( n+1 \right)}{30}\left( 6{{n}^{3}}+9{{n}^{2}}+n-1 \right) \\
\end{align}\]
We further factorize $6{{n}^{3}}+9{{n}^{2}}+n-1$ to have the required value from the question as ,
\[{{s}_{4}}=\dfrac{1}{30}n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+6n-1 \right)\]
Note: We note that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is specialized form of binomial expansion of ${{\left( x+y \right)}^{n}}$ which is given as $\left( ^{n}{{C}_{0}} \right){{x}^{n}}{{y}^{0}}+\left( ^{n}{{C}_{1}} \right){{x}^{n-1}}y+...+\left( ^{n}{{C}_{n}} \right){{x}^{0}}{{y}^{n}}$ where $n$ is always a non-negative integers and $x,y$ are real numbers. We also note that the obtained expression of ${{s}_{4}}$ is the sum of first $n$ terms raised to the power of 4.
Complete step-by-step solution:
We know that the binomial expansion of ${{\left( 1+x \right)}^{a}}$ is,
\[\begin{align}
& {{\left( 1+x \right)}^{a+1}}{{=}^{a+1}}{{C}_{0}}{{+}^{a+1}}{{C}_{1}}x{{+}^{a+1}}{{C}_{1}}{{x}^{2}}...{{+}^{a+1}}{{C}_{a+1}}{{x}^{a+1}} \\
& \Rightarrow {{\left( 1+x \right)}^{a+1}}-1-{{x}^{a+1}}{{=}^{a+1}}{{C}_{1}}x{{+}^{a+1}}{{C}_{1}}{{x}^{2}}...{{+}^{a+1}}{{C}_{a}}{{x}^{a}}....(1) \\
\end{align}\]
We are given in the question that
\[{{s}_{k}}={{1}^{k}}+{{2}^{k}}+...+{{n}^{k}}\]
We are also given to prove,
\[\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}={{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)}\]
Let us expand the left hand side of the above summation and have
\[\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}=}\left( ^{m+1}{{C}_{1}} \right){{s}_{1}}+\left( ^{m+1}{{C}_{2}} \right){{s}_{2}}+...+\left( ^{m+1}{{C}_{m}} \right){{s}_{m}}\]
We substitute the value of ${{s}_{k}}$ for each value of $k=1,2,..,m$ and have,
\[\begin{align}
& \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}{{=}^{m+1}}{{C}_{1}}\left( {{1}^{1}}+{{2}^{1}}+...+{{n}^{1}} \right){{+}^{m+1}}{{C}_{2}}\left( {{1}^{2}}+{{2}^{2}}+...+{{n}^{2}} \right)+ \\
& ...{{+}^{m+1}}{{C}_{m}}\left( {{1}^{m}}+{{2}^{m}}+...+{{n}^{m}} \right) \\
\end{align}\]
Let us collect the terms with base 1 and who have exponents $1,2,..m$. Similarly we collect terms with base 2, base 3 and so on in the above equation. We have
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}=\left( ^{m+1}{{C}_{1}}{{1}^{1}}{{+}^{m+1}}{{C}_{2}}{{1}^{2}}{{...}^{m+1}}{{C}_{m}}{{1}^{m}} \right)+\left( ^{m+1}{{C}_{1}}{{2}^{1}}{{+}^{m+1}}{{C}_{2}}{{2}^{2}}{{...}^{m+1}}{{C}_{m}}{{2}^{m}} \right)... \\
& +\left( ^{m+1}{{C}_{1}}{{n}^{1}}{{+}^{m+1}}{{C}_{2}}{{n}^{2}}{{...}^{m+1}}{{C}_{m}}{{n}^{m}} \right).....(2) \\
\end{align}\]
Let us observe the first set of summation$^{m+1}{{C}_{1}}{{1}^{1}}{{+}^{m+1}}{{C}_{2}}{{1}^{2}}{{...}^{m+1}}{{C}_{m}}{{1}^{m}}$. We see that it is almost a binomial expansion in the form ${{\left( 1+x \right)}^{a}}$, but it is missing the first term $^{m+1}{{C}_{0}}$ and the last term $^{m+1}{{C}_{m+1}}{{1}^{m+1}}$. So we use the equation (1) and substitute $x=1$ and $a=m+1$ to have
\[\begin{align}
& {{\left( 1+1 \right)}^{m+1}}-1-{{1}^{m+1}}{{=}^{m+1}}{{C}_{1}}{{1}^{1}}{{+}^{m+1}}{{C}_{1}}{{1}^{2}}...{{+}^{m+1}}{{C}_{m}}{{1}^{m}} \\
& \Rightarrow {{\left( 2 \right)}^{m+1}}-1-{{1}^{m+1}}{{=}^{m+1}}{{C}_{1}}{{1}^{1}}{{+}^{m+1}}{{C}_{1}}{{1}^{2}}...{{+}^{m+1}}{{C}_{m}}{{1}^{m}} \\
\end{align}\]
Similarly we observe the first second set of summation $^{m+1}{{C}_{1}}{{2}^{1}}{{+}^{m+1}}{{C}_{2}}{{2}^{2}}{{...}^{m+1}}{{C}_{m}}{{2}^{m}}$. We see that it is also almost a binomial expansion in the form ${{\left( 1+x \right)}^{a}}$, but it is missing the first term $^{m+1}{{C}_{0}}$ and the last term $^{m+1}{{C}_{m+1}}{{2}^{m+1}}$. So we use the equation (1) and substitute $x=2$ and $a=m+1$ to have
\[\begin{align}
& {{\left( 1+2 \right)}^{m+1}}-1-{{2}^{m+1}}{{=}^{m+1}}{{C}_{1}}{{2}^{1}}{{+}^{m+1}}{{C}_{1}}{{2}^{2}}...{{+}^{m+1}}{{C}_{m}}{{2}^{m}} \\
& \Rightarrow {{\left( 3 \right)}^{m+1}}-1-{{2}^{m+1}}{{=}^{m+1}}{{C}_{1}}{{2}^{1}}{{+}^{m+1}}{{C}_{1}}{{2}^{2}}...{{+}^{m+1}}{{C}_{m}}{{2}^{m}} \\
\end{align}\]
We can similarly substitute $x=3,4...,n$ and find expression of the form ${{\left( 1+x \right)}^{m+1}}-1-{{x}^{m+1}}$ . We replace the summations in equation (2) and get
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}={{\left( 2 \right)}^{m+1}}-1-{{1}^{m+1}}+{{\left( 3 \right)}^{m+1}}-1-{{2}^{m+1}}+...+{{\left( n+1 \right)}^{m+1}}-1-{{n}^{m+1}} \\
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}={{2}^{m+1}}-{{1}^{m+1}}+{{3}^{m+1}}-{{2}^{m+1}}+{{4}^{m+1}}-{{3}^{m+1}} \\
& ...+{{\left( n+1 \right)}^{m+1}}-{{n}^{m+1}}-\left( 1+1+1...n\text{ times} \right) \\
\end{align}\]
We observe that all terms except ${{1}^{m+1}}=1$ and ${{\left( n+1 \right)}^{m+1}}$ cancel out. So we have
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}=-1+{{\left( n+1 \right)}^{m+1}}-n \\
& \Rightarrow \sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{s}_{r}}}={{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)...(3) \\
\end{align}\]
Hence the statement is proved.
We know from the formula of sum of first $n$, squared $n$ and cubed $n$ terms that
\[\begin{align}
& 1+2+3...n=\dfrac{n\left( n+1 \right)}{2}={{s}_{1}} \\
& {{1}^{2}}+{{2}^{2}}+{{3}^{2}}...{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}={{s}_{2}} \\
& {{1}^{3}}+{{2}^{3}}+{{3}^{3}}...{{n}^{3}}={{\left[ \dfrac{n\left( n+1 \right)}{2} \right]}^{2}}={{s}_{3}} \\
\end{align}\]
We now use the above values and putting $n=4$ in equation(3) and get,
\[\begin{align}
& \sum\limits_{r=1}^{4}{^{4+1}{{C}_{r}}{{s}_{r}}}={{\left( n+1 \right)}^{4+1}}-\left( n+1 \right) \\
&{{\Rightarrow }^{5}}{{C}_{1}}{{s}_{1}}{{+}^{5}}{{C}_{2}}{{s}_{2}}{{+}^{5}}{{C}_{3}}{{s}_{3}}{{+}^{5}}{{C}_{4}}{{s}_{4}}={{\left( n+1 \right)}^{5}}-\left( n+1 \right) \\
& \Rightarrow 5\dfrac{n\left( n+1 \right)}{2}+10\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+10\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}+5{{s}_{4}}={{\left( n+1 \right)}^{5}}-\left( n+1 \right) \\
& \Rightarrow 5{{s}_{4}}={{\left( n+1 \right)}^{5}}-\left( n+1 \right)-\dfrac{5n\left( n+1 \right)}{2}+\dfrac{5n\left( n+1 \right)\left( 2n+1 \right)}{3}+\dfrac{5{{n}^{2}}{{\left( n+1 \right)}^{2}}}{2} \\
\end{align}\]
We take $\dfrac{n+1}{6}$ common form the right hand side and get,
\[\begin{align}
& \Rightarrow 5{{s}_{4}}={{\left( n+1 \right)}^{5}}-\left( n+1 \right)-\dfrac{5n\left( n+1 \right)}{2}-\dfrac{5n\left( n+1 \right)\left( 2n+1 \right)}{3}-\dfrac{5{{n}^{2}}{{\left( n+1 \right)}^{2}}}{2} \\
& \Rightarrow 5{{s}_{4}}=\dfrac{n+1}{6}\left( 6{{\left( n+1 \right)}^{4}}-6-15n\left( n+1 \right)-15n\left( 2n+1 \right)-15{{n}^{2}}{{\left( n+1 \right)}^{2}} \right) \\
& \Rightarrow 5{{s}_{4}}=\dfrac{n+1}{6}\left( 6{{n}^{4}}+9{{n}^{3}}+{{n}^{2}}-n \right) \\
& \Rightarrow {{s}_{4}}=\dfrac{n\left( n+1 \right)}{30}\left( 6{{n}^{3}}+9{{n}^{2}}+n-1 \right) \\
\end{align}\]
We further factorize $6{{n}^{3}}+9{{n}^{2}}+n-1$ to have the required value from the question as ,
\[{{s}_{4}}=\dfrac{1}{30}n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+6n-1 \right)\]
Note: We note that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is specialized form of binomial expansion of ${{\left( x+y \right)}^{n}}$ which is given as $\left( ^{n}{{C}_{0}} \right){{x}^{n}}{{y}^{0}}+\left( ^{n}{{C}_{1}} \right){{x}^{n-1}}y+...+\left( ^{n}{{C}_{n}} \right){{x}^{0}}{{y}^{n}}$ where $n$ is always a non-negative integers and $x,y$ are real numbers. We also note that the obtained expression of ${{s}_{4}}$ is the sum of first $n$ terms raised to the power of 4.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

