
If ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$ , then
A) ${k_1} = 2{k_2}$
B) ${k_1} = {k_2} + 4$
C) ${k_1} = {k_2}$
D) None of these
Answer
581.7k+ views
Hint:
It is given in the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
Firstly, we will find the value of $\tan 3\theta - \tan \theta $ , $\tan 9\theta - \tan 3\theta $ , $\tan 27\theta - \tan 9\theta $ using formula $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ and $\sin 2A = 2\sin A\cos A$ .
Then after, we will add the values of $\tan 3\theta - \tan \theta $ , $\tan 9\theta - \tan 3\theta $ , $\tan 27\theta - \tan 9\theta $ to get ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$ .
Finally, solving further we will get the required answer.
Complete step by step solution:
It is given in the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
Now, first $\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ .
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}$
Since, we know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ and $\sin 2A = 2\sin A\cos A$ .
Now, let $A = 3\theta $ and $B = \theta $ .
Therefore, by applying formula in the above equation, we get,
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin \left( {3\theta - \theta } \right)}}{{\cos 3\theta \cos \theta }}$
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }}\]
Since, $\sin 2\theta = 2\sin \theta \cos \theta $
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }}\]
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}\] (I)
Similarly, using above method we will find the value of $\tan 9\theta - \tan 3\theta $
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta }}{{\cos 9\theta }} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta \cos 3\theta - \sin 3\theta \cos 9\theta }}{{\cos 9\theta \cos 3\theta }}$
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin \left( {9\theta - 3\theta } \right)}}{{\cos 9\theta \cos 3\theta }}$
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 6\theta }}{{\cos 9\theta \cos 3\theta }}\]
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta \cos 3\theta }}{{\cos 9\theta \cos 3\theta }}\]
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}\] (II)
Similarly, using above method we will find the value of $\tan 27\theta - \tan 9\theta $
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta }}{{\cos 27\theta }} - \dfrac{{\sin 9\theta }}{{\cos 9\theta }}$
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta \cos 9\theta - \sin 9\theta \cos 27\theta }}{{\cos 27\theta \cos 9\theta }}$
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin \left( {27\theta - 9\theta } \right)}}{{\cos 27\theta \cos 9\theta }}$
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 18\theta }}{{\cos 27\theta \cos 9\theta }}\]
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta \cos 9\theta }}{{\cos 27\theta \cos 9\theta }}\]
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}\] (III)
Now, add equation (I), (II) and (III), we get,
$\therefore \left( {\tan 27\theta - \tan 9\theta } \right) + \left( {\tan 9\theta - \tan 3\theta } \right) + \left( {\tan 3\theta - \tan \theta } \right) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }}$
$\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}} \right)$
$\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}} \right)$
Since, we have given the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
$\therefore {k_1} = 2{k_2}$
Hence, option (A) is correct.
Note:
As $\sin ,\cos $ and $\tan $ functions are the most commonly used trigonometry ratio.
Some properties containing functions of $\sin ,\cos $ and $\tan $ are as follows:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$\sin 2\theta = 2\sin \theta \cos \theta $
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\tan 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}$
It is given in the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
Firstly, we will find the value of $\tan 3\theta - \tan \theta $ , $\tan 9\theta - \tan 3\theta $ , $\tan 27\theta - \tan 9\theta $ using formula $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ and $\sin 2A = 2\sin A\cos A$ .
Then after, we will add the values of $\tan 3\theta - \tan \theta $ , $\tan 9\theta - \tan 3\theta $ , $\tan 27\theta - \tan 9\theta $ to get ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$ .
Finally, solving further we will get the required answer.
Complete step by step solution:
It is given in the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
Now, first $\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ .
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}$
Since, we know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ and $\sin 2A = 2\sin A\cos A$ .
Now, let $A = 3\theta $ and $B = \theta $ .
Therefore, by applying formula in the above equation, we get,
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin \left( {3\theta - \theta } \right)}}{{\cos 3\theta \cos \theta }}$
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }}\]
Since, $\sin 2\theta = 2\sin \theta \cos \theta $
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }}\]
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}\] (I)
Similarly, using above method we will find the value of $\tan 9\theta - \tan 3\theta $
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta }}{{\cos 9\theta }} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta \cos 3\theta - \sin 3\theta \cos 9\theta }}{{\cos 9\theta \cos 3\theta }}$
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin \left( {9\theta - 3\theta } \right)}}{{\cos 9\theta \cos 3\theta }}$
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 6\theta }}{{\cos 9\theta \cos 3\theta }}\]
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta \cos 3\theta }}{{\cos 9\theta \cos 3\theta }}\]
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}\] (II)
Similarly, using above method we will find the value of $\tan 27\theta - \tan 9\theta $
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta }}{{\cos 27\theta }} - \dfrac{{\sin 9\theta }}{{\cos 9\theta }}$
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta \cos 9\theta - \sin 9\theta \cos 27\theta }}{{\cos 27\theta \cos 9\theta }}$
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin \left( {27\theta - 9\theta } \right)}}{{\cos 27\theta \cos 9\theta }}$
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 18\theta }}{{\cos 27\theta \cos 9\theta }}\]
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta \cos 9\theta }}{{\cos 27\theta \cos 9\theta }}\]
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}\] (III)
Now, add equation (I), (II) and (III), we get,
$\therefore \left( {\tan 27\theta - \tan 9\theta } \right) + \left( {\tan 9\theta - \tan 3\theta } \right) + \left( {\tan 3\theta - \tan \theta } \right) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }}$
$\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}} \right)$
$\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}} \right)$
Since, we have given the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
$\therefore {k_1} = 2{k_2}$
Hence, option (A) is correct.
Note:
As $\sin ,\cos $ and $\tan $ functions are the most commonly used trigonometry ratio.
Some properties containing functions of $\sin ,\cos $ and $\tan $ are as follows:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$\sin 2\theta = 2\sin \theta \cos \theta $
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\tan 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

