
If ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$ , then
A) ${k_1} = 2{k_2}$
B) ${k_1} = {k_2} + 4$
C) ${k_1} = {k_2}$
D) None of these
Answer
569.1k+ views
Hint:
It is given in the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
Firstly, we will find the value of $\tan 3\theta - \tan \theta $ , $\tan 9\theta - \tan 3\theta $ , $\tan 27\theta - \tan 9\theta $ using formula $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ and $\sin 2A = 2\sin A\cos A$ .
Then after, we will add the values of $\tan 3\theta - \tan \theta $ , $\tan 9\theta - \tan 3\theta $ , $\tan 27\theta - \tan 9\theta $ to get ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$ .
Finally, solving further we will get the required answer.
Complete step by step solution:
It is given in the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
Now, first $\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ .
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}$
Since, we know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ and $\sin 2A = 2\sin A\cos A$ .
Now, let $A = 3\theta $ and $B = \theta $ .
Therefore, by applying formula in the above equation, we get,
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin \left( {3\theta - \theta } \right)}}{{\cos 3\theta \cos \theta }}$
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }}\]
Since, $\sin 2\theta = 2\sin \theta \cos \theta $
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }}\]
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}\] (I)
Similarly, using above method we will find the value of $\tan 9\theta - \tan 3\theta $
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta }}{{\cos 9\theta }} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta \cos 3\theta - \sin 3\theta \cos 9\theta }}{{\cos 9\theta \cos 3\theta }}$
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin \left( {9\theta - 3\theta } \right)}}{{\cos 9\theta \cos 3\theta }}$
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 6\theta }}{{\cos 9\theta \cos 3\theta }}\]
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta \cos 3\theta }}{{\cos 9\theta \cos 3\theta }}\]
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}\] (II)
Similarly, using above method we will find the value of $\tan 27\theta - \tan 9\theta $
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta }}{{\cos 27\theta }} - \dfrac{{\sin 9\theta }}{{\cos 9\theta }}$
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta \cos 9\theta - \sin 9\theta \cos 27\theta }}{{\cos 27\theta \cos 9\theta }}$
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin \left( {27\theta - 9\theta } \right)}}{{\cos 27\theta \cos 9\theta }}$
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 18\theta }}{{\cos 27\theta \cos 9\theta }}\]
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta \cos 9\theta }}{{\cos 27\theta \cos 9\theta }}\]
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}\] (III)
Now, add equation (I), (II) and (III), we get,
$\therefore \left( {\tan 27\theta - \tan 9\theta } \right) + \left( {\tan 9\theta - \tan 3\theta } \right) + \left( {\tan 3\theta - \tan \theta } \right) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }}$
$\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}} \right)$
$\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}} \right)$
Since, we have given the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
$\therefore {k_1} = 2{k_2}$
Hence, option (A) is correct.
Note:
As $\sin ,\cos $ and $\tan $ functions are the most commonly used trigonometry ratio.
Some properties containing functions of $\sin ,\cos $ and $\tan $ are as follows:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$\sin 2\theta = 2\sin \theta \cos \theta $
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\tan 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}$
It is given in the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
Firstly, we will find the value of $\tan 3\theta - \tan \theta $ , $\tan 9\theta - \tan 3\theta $ , $\tan 27\theta - \tan 9\theta $ using formula $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ and $\sin 2A = 2\sin A\cos A$ .
Then after, we will add the values of $\tan 3\theta - \tan \theta $ , $\tan 9\theta - \tan 3\theta $ , $\tan 27\theta - \tan 9\theta $ to get ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$ .
Finally, solving further we will get the required answer.
Complete step by step solution:
It is given in the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
Now, first $\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$ .
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}$
Since, we know that $\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B$ and $\sin 2A = 2\sin A\cos A$ .
Now, let $A = 3\theta $ and $B = \theta $ .
Therefore, by applying formula in the above equation, we get,
$\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin \left( {3\theta - \theta } \right)}}{{\cos 3\theta \cos \theta }}$
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }}\]
Since, $\sin 2\theta = 2\sin \theta \cos \theta $
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }}\]
\[\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}\] (I)
Similarly, using above method we will find the value of $\tan 9\theta - \tan 3\theta $
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta }}{{\cos 9\theta }} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta \cos 3\theta - \sin 3\theta \cos 9\theta }}{{\cos 9\theta \cos 3\theta }}$
$\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin \left( {9\theta - 3\theta } \right)}}{{\cos 9\theta \cos 3\theta }}$
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 6\theta }}{{\cos 9\theta \cos 3\theta }}\]
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta \cos 3\theta }}{{\cos 9\theta \cos 3\theta }}\]
\[\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}\] (II)
Similarly, using above method we will find the value of $\tan 27\theta - \tan 9\theta $
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta }}{{\cos 27\theta }} - \dfrac{{\sin 9\theta }}{{\cos 9\theta }}$
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta \cos 9\theta - \sin 9\theta \cos 27\theta }}{{\cos 27\theta \cos 9\theta }}$
$\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin \left( {27\theta - 9\theta } \right)}}{{\cos 27\theta \cos 9\theta }}$
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 18\theta }}{{\cos 27\theta \cos 9\theta }}\]
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta \cos 9\theta }}{{\cos 27\theta \cos 9\theta }}\]
\[\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}\] (III)
Now, add equation (I), (II) and (III), we get,
$\therefore \left( {\tan 27\theta - \tan 9\theta } \right) + \left( {\tan 9\theta - \tan 3\theta } \right) + \left( {\tan 3\theta - \tan \theta } \right) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }}$
$\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}} \right)$
$\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}} \right)$
Since, we have given the question that ${k_1} = \tan 27\theta - \tan \theta $ and ${k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}$
$\therefore {k_1} = 2{k_2}$
Hence, option (A) is correct.
Note:
As $\sin ,\cos $ and $\tan $ functions are the most commonly used trigonometry ratio.
Some properties containing functions of $\sin ,\cos $ and $\tan $ are as follows:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
${\sin ^2}\theta + {\cos ^2}\theta = 1$
$\sin 2\theta = 2\sin \theta \cos \theta $
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\tan 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

